588

SNELL & WILMER LLP

Alan L. Sullivan (3152)

Todd M. Shaughnessy (6651)

15 West South Temple

Gateway Tower West

Salt Lake City, Utah 84101-1004
Telephone: (801)257-1900
Facsimile: (801) 257-1800

CRAVATH, SWAINE & MOORE LLP
Evan R. Chesler (admitted pro hac vice)
David R. Marriott (7572)

Worldwide Plaza

825 Eighth Avenue

New York, New York 10019
Telephone: (212) 474-1000

Facsimile: (212) 474-3700

Attorneys for Defendant/Counterclaim-Plaintiff
International Business Machines Corporation

IN THE UNITED STATES DISTRICT COURT

FOR THE DISTRICT OF UTAH

THE SCO GROUP, INC.

Plaintiff/Counterclaim-Defendant,

-against-

INTERNATIONAL BUSINESS MACHINES

CORPORATION,

Defendant/Counterclaim-Plaintiff.

REBUTTAL DECLARATION
OF RANDALL DAYVIS

Civil No. 2:03CV-0294 DAK
Honorable Dale A. Kimball

Magistrate Judge Brooke C. Wells

FILED UNDER SEAL

I. INTRODUCTION

1. I have been asked by counsel for IBM to respond to the Declaration of Marc
Rochkind submitted by The SCO Group, Inc. (“SCO”) in opposition to IBM’s motion to
limit SCO’s claims. This declaration is limited to responding to the issues raised by Mr.
Rochkind.

2. Like my declaration dated March 29, 2006, this declaration is based on my
experience working in the field of computer science and evaluating allegations of
intellectual property violations. I further base the facts and opinions set out in this
declaration upon careful review of SCO’s Final Disclosure of Allegedly Misused Material
dated December 22, 2005 (the “Final Disclosures™).

3. In summary, the Rochkind declération talks past the conclusions set out in my
previous declaration. While Mr. Rochkind states that he"‘strongly disagree[s] with [my]
assertion (at paragraph 11) that SCO has failed to identify with specificity 198 challenged
Items in the December submission” (Rochkind Decl. § 7), he fails to directly confront the
facts set out in my declaration and his conclusion is clearly based on a very different
inquiry. Put differently, Mr. Rochkind reached a different conclusion than I did because
he answered a different question.

4. If the question is whether SCO provided version, file and line information for
each of the 198 Items at issue, then the answer is unquestionably “No”. Although
Mr. Rochkind uses words that might be understood to suggest that these coordinates have
been provided where possible (Rochkind Decl. §f 11-12), they have not been. Notably,
he makes no effort to show that they have. Without version, file and line information
concerning SCO’s allegations, it is simply not possible fully to understand its claims,

which puts IBM at an extraordinary disadvantage.

5. I the question is whether version, file, and line information is still needed even

where the allegations concern misuse of methods and concepts (rather than copying of
code), the answer is unquestionably “Yes.” It is entirely possible for the party making the
allegations of misuse to assemble such information: Where a method or concept is in fact
used in a program, there must be lines of source code in the program that implement the
method or concept. The alleging party need simply cite the program version, file, and
lines in which that source code appears.

6. In the next section of this declaration, 1 explain some basic background that
helps in understanding why Mr. Rochkind’s position is untenable. Section III details the
fundamental disagreement between my original declaration and the Rochkind declaration.
In Section 1V, I respond to Mr. Rochkind’s assertions that the 198 Items are essentially all
methods and concepts claims and that such claims do not require version, file and line
information. In Section V, I address Mr. Rochkind’s assertion that IBM has more than
enough information to defend itself. Finally, in Section VI, I consider Mr. Rochkind’s
claim regarding “willfulness”.

II. IMPORTANT BACKGROUND

7. Several basic facts concerning this case are worth reviewing briefly to help
make clear the difficulties presented by SCO’s position on disclosure.

8. First, SCO has alleged misuse of its intellectual property, claiming, among
other things, that its System V Unix code was copied by IBM into AIX and/or Dynix and
then contributed, with and without AIX and Dynix code, by IBM to Linux. For these
allegations to be understood, SCO must (a) specify the System V code that was allegedly
copied, (b) specify where in AIX and/or Dynix the code allegedly derived from System V

appears, and (c) specify where in Linux the allegedly infringing code appears.

9. Without such specification, how can IBM respond, much less prepare a
defense? How, for instance, can it determine whether the code allegedly copied from
System V is in fact protectable, or instead is unoriginal; an idea, process or procedure;
dictated by externalities; or in the public domain? Such an analysis must proceed from
the specific code, and absent an indication of what code is in question, the analysis cannot
even begin.

10. Second, the volume of code at issue in this case is so enormous as to make it
pragmatically impossible to determine what code might be in question unless the version,
file and lines are specified. To put this in more familiar terms, consider that a single
recent version of Linux contains about 6 million lines which if printed would be about
110,000 pages. In other words, a single recent version of Linux is the equivalent of a 2/8
volume encyclopedia.1 Now consider that there are 597 distinct versions, and think of each
version as an edition of the encyclopedia. Hence in the absence of a specification of
version, file and line information for the allegedly misused code, SCO is essentially
saying “somewhere in the 597 distinct editions of this multi-(in many cases 100+)volume
encyclopedia you have misused some of our property.”

11. Without a specification of the System V code that has allegedly been copied,
IBM cannot know with specificity even what IBM‘stands accused of misusing. Without a
specification of where the accused code allegedly appears in Linux and AIX or Dynix,

IBM faces a pragmatically impossible task of finding it. For the record, there are:

! Assuming 500 pages to a volume. Even the earliest and smallest version of Linux
contains over 175,000 lines of text, the equivalent of over 3000 pages.

e At least 11 versions of System V code totaling almost 24 million lines of text’;

e At least 9 versions of AIX totaling almost 1.2 billion lines;

e At least 25 versions of Dynix totaling almost 157 millions lines; and

o At least 597 versions of Linux totaling almost 1.4 billion lines.

12. In the case of the 198 challenged items, SCO thus has offered an impossibly
non—specifip accusation, attempting to leave both the interpretation of the allegations and
the finding of the evidence (should there be any) as an exercise for IBM. Requesting
version, file, and line numbers for all the code in question is no more unreasonable on the
face of it than an encyclopedia publisher asking that an allegation of plagiarism be
specified in terms of the edition, volume and page where the accused text appears, as well
as a listing of the text from which it was allegedly copied.

13. In the absence of such information, allegations are impossible even to analyze:
imagine the publisher of the Encyclopedia Americana teiling the publisher of the
Encyclopedia Britannica “your encyciopedia contains material that was copied from us”
and then refusing to specify what was copied (what text from which edition, volume and
page of the Americana) or where it appears (which edition, volume and page of the
Britannica).

1. THE REASON FOR MR. ROCHKIND’S DISAGREEMENT

14. Mr. Rochkind disagrees with my conclusion that the 198 Items are not

disclosed with the requisite specificity. The primary reason for this disagreement is that

? Each complete version of an operating system is typically given a distinct “release
number,” as, for example, version 2.6.9 of Linux. The version counts given above list the
number of distinct versions shown in the Declaration of Todd Shaughnessy, dated April 4,
2006; the total lines of text cited report all text contained in both the complete versions
and any additional “patches” (i.e., incremental changes), as listed in the Shaughnessy
Declaration.

he used a very different test to evaluate specificity than I did. When the test that I

understand to be the correct test is applied, the 198 Items come nowhere close to passing ‘

muster.
15. 1 was instructed by counsel for IBM to evaluate the 198 Items based on the

language of the Court’s orders of December 12, 2003, March 3, 2004, and July 1, 2005.

As described in Exhibit A, I understand the orders to require the disclosure of the

allegedly misused material by version, file and line of code. That is the standard (and

most precise) means of identifying the code, methods and concepts, and concepts of an

operating system.
16. The Court’s Order of December 12, 2003, states that SCO is required:

(1) “To identify and state with specificity the source code(s) that SCO is claiming
form the basis of their action against IBM.” (§4.)

(2) “To respond fully and in detail to Interrogatory Nos. 1-9 as stated in IBM’s
First Set of Interrogatories™ (Y 1), which provide, for example, as follows:

Interrogatory 1: “Please identify, with specificity (by product, file
and line of code, where appropriate) all of the alleged trade secrets
and any confidential or proprietary information that plaintiff alleges
or contends IBM misappropriated or misused,”

Interrogatory 3: “Please . . . describe, in detail, . . . all places or
locations where the alleged trade secret or confidential information
may be found or accessed.”

|

\

|

|

|

|

|

|

|

|

\

Interrogatory 4: “Please describe, in detail, . . . with respect to |
any code or method plaintiff alleges or contends that IBM ‘
misappropriated or misused, the location of each portion of such |
code or method in any product, such as AIX, in Linux, in open ‘
source, or in the public domain.”
\

|

(3) “Torespond fully and in detail to Interrogatory Nos. 12 and 13 as stated in
IBM’s Second Set of Interrogatories” (2), which provide, for example, as
follows:

Interrogatory 12: “Please identify, with specificity (by file and
line of code), (a) all source code and other material in Linux . . . to

which plaintiff has rights; and . . . how the code or other material
derives from UNIX.”

Interrogatory 13: “[Pllease . . . describe in detail how IBM is
alleged to have infringed plaintiff’s rights. . . .”

17. The Court’s Order of March 3, 2004, required SCO to: (1) “provide and
identify all specific lines of code that IBM is alleged to have contributed to Linux from
either AIX or Dynix” (2), (2) “provide and identify all specific lines of code from Unix
System V from which IBM’s contributions from AIX or Dynix are alleged to be derived”
(1 3), and (3) “provide and identify with specificity all lines of code in Linux that it claims
rights to” (Y 4, emphasis added). It is difficult to imagine instructions that are any clearer,
more specific, or more unambiguous.

18. The Court’s Order of July 1, 2005 (at 4) reiterated SCO’s obligations to
specify its claims and ordered it to update its interrogatories accordingly.

19. Note that the Court’s orders required no more of SCO than SCO required of
IBM. In its First Request for Production of Documents, SCO defined the term “identify”
as follows:

“DEFINITIONS AND INSTRUCTIONS . ..

The term “identify” shall mean: . . .

e. in the case of alleged trade secrets or confidential or proprietary

information, whether computer code, methods, or otherwise, to give a

complete and detailed description of such trade secrets or confidential or

proprietary information, including but not limited to an identification of the

specific lines and portions of code claimed as trade secrets or confidential

or proprietary information, and the location (by module name, file name,

sequence number or otherwise) of those lines of code within any larger
software product or property.” (Exhibit B (emphasis added).)

I understand that SCO subsequently incorporated this identical definition in eight

additional document requests, five additional sets of interrogatories, seven 30(b)(6)

deposition notices, and three requests for admission, the latest of which was served on
March 10, 2006. Thus, SCO itself has continuously demanded the same degree of
specificity ordered by the Court and requested by IBM.

20. Despite the language of fhe Court’s orders, and of SCO’s own discovery
requests, the Final Disclosures do not provide version, file and line information for each
of the 198 Challenged Items. As is illustrated in my original declaration (Addendum B),
and summarized in the following table, SCO provides version, file and line information

for very few of the Challenged Items:

System V | 1 1 0
AIX 1 1 0
Dynix 2 3 0
Linux 27 149 3

Note that there is not even one Item for which SCO provides a complete set of

coordinates.

21. Mr. Rochkind does not seem to disagree that SCO has not provided a
complete set of coordinates for each of the 198 Items. Instead, he asserts that, with
respect to many of the Items, SCO has provided sufficient detail relating to claims
because it has summarized its allegations of misuse, provided documents relating to the
alleged misuse, identified persons involved in the alleged misuse and/or pointed IBM to

source code. (Rochkind Decl. 99.)

22. It is true that SCO has, for most of the Items, summarized its allegations,
listed persons involved in the alleged misuse and referred IBM to certain documents.

That is simply not the appropriate measure of compliance, as | understand the Court’s
orders. Nor would it be the appropriate measure of compliance under SCO’s own
discovery requests. Mr. Rochkind’s declaration defines his own standard of specificity
and asserts that SCO’s Final Disclosures, of which Mr. Rochkind claims to be the primary
author, meet the standard.

23. Putting aside the language of the Court’s orders, it is difficult to consider the
information SCO has provided as sufficiently specific when (1) many of the summaries
are extremely general (e.g., [tem 180 claims only that IBM misused the “internals” of
System V Release 4, without any mention of which part of the several-million-line
operating system was misused); (2) the documents provi&ed are mostly documents that
IBM provided to SCO, and they tell IBM little more than it would have known before
SCO filed its complaint; (3) for many of the Items, SCO does not identify any individuals,
it says only “IBM?”; and (4) according to Exhibit B to Mr. Rochkind’s declaration, SCO‘
identified code with respect to no more than 16 of the 198 Items.

24. If the Court’s orders required only that SCO i)rovide some minimal, additional
information about its allegations, then I agree with Mr. Rochkind that it has done that. If
they required that SCO provide the standard coordinates for identifying allegedly misused
aspects of an operating system (code, methods and concepts), then SCO’s disclosures
regarding the 198 Items fall far short. For some of the Items (e.g., Item 93), the Final

Disclosures reveal little more than the minimal description found in SCO’s Complaint.

IV. MR. ROCHKIND’S ASSERTIONS ABOUT METHODS AND CONCEPTS

25. Rather than disagree with the fact that SCO has not provided version, file and
line information regarding any of the 198 Items, Mr. Rochkind devotes the better part of
his declaration to rationalizing SCO’s decision not to provide the information. Contrary
to Mr. Rochkind’s suggestion, however, there is no reason SCO could not have provided
the missing information with respect to its methods and concepts-misuse allegations, as
well as its code-misuse allegations.

26. To begin, Mr. Rochkind seems to suggest that virtually all of the 198 Items
concern methods and concepts rather than source code. (Rochkind Decl. Y 8-9.)
According to Mr. Rochkind, less information is required-to evaluate a method than is
required to evaluate code. (Rochkind Decl. § 10.) Thus, Mr. Rochkind states, there was
no need for SCO to identify version, file and line information relating to methods and
concepts. (Rochkind Decl. § 10.) Putting aside the fact that the Court’s orders -- on their
face -- require version, file and line information for methods and concepts as well as code,
Mr. Rochkind is mistaken both as to the number of Items that concern methods and
concepts and the information needed fully to evaluate operating-system methods andb
concepts.

27. Contrary to Mr. Rochkind’s suggestion, a significant portion of the 198 Items
concern the alleged misuse of code. As described in Exhibit C, the language of many of

the challenged Items themselves relate to the alleged misuse of code. For example:

Item 17: “Port of discontiguous memory code from ptx to Linux 2.5”.
Item22: “Port of ptx NUMA code to Linux”.

Item 27: “Transferring ptx source code to AIX developers”.

10

Thus, it is simply wrong for SCO’s Mr. Rochkind to imply that the only Items in dispute
concern methods and concepts.

28. Mr. Rochkind suggests that all Items; of allegedly misused of code are
disclosed by SCO with appropriate liney specificity. That is unfortunately patently false
and Mr. Rochkind is ignoring dozens of the 198 challenged Items that do concern alleged
code misuse. In fact, many of the Items that clearly concern the alleged misuse of code
comprise SCO’s most imprecise allegations. In 39 of the Items (Items 232 to 270), for
example, SCO accuses IBM of making improper reference to Dynix source code as a
basis for writing additional code, while providing essentially no further information. Each
of these 39 items has an “Improper Disclosure” claim of the form: “Use of ptx [i.e.,
Dynix] programming experience (and a fortiori exposure to related aspects of Unix
System V) in programming [or ‘implementing’] ,” where the blank contains
things such as “MP preemption and synchronization code”, “i686 large-memory SMP
systems”, “code for SCSI Mid-layer Multi-Path 10”, and so forth. Thatis, SCO is
specifically accusing IBM of referring to Dynix code and System V code, and then using
that as the basis for creating additional code (e.g., “MP preemption and synchronization
code”). Yet there is absolutely no specification of any kind (no version, file, or line
numbers) of which Unix code was allegedly referenced, or of which Dynix code was
allegedly referenced. IBM is left to guess as to which of the 470,000-plus files and 156
million-plus lines of Dynix code included within SCO’s vague claims are in fact
challenged by these Items.

29. As if to further justify SCO’s failure to provide version, file and line
information, Mr. Rochkind suggests that it is not possible to identify version, file and line

coordinates with respect to methods and concepts. (Rochkind Decl. q 10.) That is simply

11

incorrect. The methods and concepts employed in an operating system (or any computer
program) are in the source code. It could not be otherwise: The source code of a
program specifies all of its possible behavior. If that behavior truly embodies a method,
that method must be expressed in specific lines of the source code; there is just no other
way to do it.

30. Consider, for example, Item 146, which alleges (among other things) that
IBM improperly disclosed a method called “differential profiling”. Simply put, the
method suggests ways of finding performance bottlenecks by counting the events that
happen inside a program and then analyzing those counts. But the counting and analyzing
can be done only by code, i.e., source code written to keep track of the number of times an
event happens and written to analyze the counts as explained in the method. Any time a
method is used, it can only be because there is source code that implements it. It really is
that simple. Hence, if System V, AIX, Dynix or Linux used that method, they must
contain source code that implements it, and SCO ought to cite the specific lines of code.

31. Although, as Mr. Rochkind states (Rochkind Decl. 4 10), methods and
concepts are sometimes discussed in text books without reference to source code, such
discussions are, most often, at a high level of generality.- The mere fact that a method can
be discussed generally without referring to source code does not mean that its
corresponding source code cannot be identified. It can, and SCO--having alleged that
System V, AIX, Dynix or Liﬁux code somewhere embody a method--bears the
responsibility of identifying the specific code it claims embodies that method.

32. The disclosure of the corresponding source code also greatly aids in
understanding the method, as Mr. Rochkind’s own text illustrates. Despite his attempt to

make the identification of source code seem irrelevant to the identification of methods and

concepts (Rochkind Decl. § 10), his own book on the subject of operating systems,

Advanced Unix Programming (2d ed. 2004), (which he asserts, “explain[s] in detail how
to use UNIX system calls” (5)) devotes considerable space to describing methods and
concepts with reference to source code. For example, it states that “this new book
includes thousands of lines of example code”. (xii). Indeed, his chapter devoted to
“Fundamental Concepts” describes UNIX concepts using, in many cases, nearly full-page
excerpts of source code and even refers back to his own website to offer complete code
listings where the excerpts are not enough. (See, e.g., id. at 24-38. (Exhibit D).)

33. SCO’s Chief Technology Officer, Sandeep Gupta, testified concerning the
importance of having version, file and line information with respect to methods and
concepts. Mr. Gupta was asked the following questions and provided the following
answers:

Q. “Okay. How would you determine whether a particular description
was specific enough to describe an aspect of System V as a method?

A. “T have to look at the source code.”

Q. “Okay. What would you do if you looked at the source code?

A. “I look at various steps that are taken, specific for that particular
method.”
Q. “Okay. So in order to determine what a particular method or

concept is, you would actually have to look at the source code?

A. “In some cases, yes.”

Q. “Okay. I mean, I -- I understand you just articulated a few from
memory and --

A. “Yeah.”

Q. “-- I'm impressed with that, but in general, would you have to look

at the source code to be able to accurately describe a method or concept in
UNIX?”

A. “That’s my opinion, yes.” (Exhibit E (03/17/2006 Gupta Dep. Tr.
at 266-67) (objections omitted).)

34. Furthermore, as stated, SCO itself specifically demanded that IBM identify
methods and concepts with reference to files and lines of code. It did that, no doubt,
because the standard means of identifying an operating system method with specificity is
by file and line of code. I assume SCO would not have demanded that IBM provide
information that could not be provided.

35. In truth, it is even more important to have version, file and line information
regarding methods and concepts claims than it is to have the information for code claims.
When specific lines of source code are identified by a plaintiff who alleges they have been
improperly copied, a defendant can at least automate the process of looking for literal
infringement: he can set a computer to work searching through his own code to see if it
contains the lines identified by the plaintiff.

36. But the same cannot be said for methods and concepts. Consider once again
the alleged “Improper Disclosure” in Item 146: “The idea is to compare corresponding
buckets of the profile data to determine which portion of the code is most responsible for
the slowdown.” There are no automated techniques for finding the lines of code that
embody that method. Because they are abstractions, methods and concepts must instead
be located by manual review of the code, and given that there are between tens of millions
(System V) and billions (AIX, Linux) of lines to be searched, locating such methods and
concepts are simply untenable here. Given the size of the code base here, manual review

is, as a practical matter, an impossible task.> Hence, without a specification by SCO of

* Returning to our analogy of the two encyclopedias, imagine that the Americana
accused the Britannica of copying a specific passage of Americana’s text. Britannica

14

the location of the code implementing the method, the claim cannot be adequately
analyzed.
V. DEFENDING AGAINST SCO’S CLAIMS

37. Istated in my original declaration that SCO’s failure to provide version, file
and line information makes it impossible, practically speaking, for IBM to defend itself.
Mr. Rochkind disagrees. (Rochkind Decl. §7.) However, his view is supported only by
naked assertions and does not survive even the weakest scrutiny.

38. The kinds of questions that must be asked to defend against SCO’s allegations
are not a secret. They have been involved (more or less) in each of the 30-plus cases in
which I have been retained as an expert to deal with alleged misappropriation of
intellectual property, including in Computer Associates v. Altai, in which I served as an
expert appointed by and for the Court.

39. Among the many questions IBM must answer are the following:

) Did IBM offer the Item to Linux?

. Did the Item originate in or derive from System V and AIX or
Dynix?

. Was the Item accepted into Linux and, if so, when and to what
effect?

. Is the Item copyrightable (or is it unoriginal; a mere idea, process or

procedure; dictated by externalities; or in the public domain)?

. Has the disclosure of the Item or its inclusion in Linux had a
negative effect on SCO or a positive impact on IBM?

could do an automated search for that text. But imagine instead if Americana accused
Britannica of using what Americana claimed to be its proprietary “non-Eurocentric
method of describing history” (i.e., ensuring a more global, inclusive world view), and
then refused to give any information about which edition(s), volume(s) or page(s) in
Britannica had done that. Consider the nature and difficulty of the task Britannica would
face in trying to find places that had used that method. -

15

I do not understand Mr. Rochkind to dispute the relevance of these questions, which must
be answered on a line-by-line basis.

40. Many thousands of persons have contributed to the development of Linux,
and IBM has made many contributions to Linux, some of which represent only a few lines
of code in a file comprised of hundreds of lines of code. The only way to know whether
IBM made a given contribution is to know precisely what the alleged contribution is.
Similarly, whether a given contribution originated in, or is derived from, System V, AIX
or Dynix is a line-specific inquiry. One line may have; another may not have. Version,
file and line information is no less critical to determining whether a line of code--and
especially a method--is in Linux, since it is composed of millions of lines of codes and
many thousands of methods and concepts and concepts.

41. To determine whether an Item is copyrightablle requires line information
because that is the only way to assess originality, determine whether the line is merely an
idea, process or procedure, evaluate whether the Item is dictated by programming
practices, governed by standards, or in the public domain. These questions simply defy
generalized examination. In a given file, one line might be original, whereas another
might not; one might be in the public domain, whereas ahother might not; and so on. For
these same reasons, it is also not possible to evaluate whether a method has a positive
impact on Linux and IBM (or a detrimental impact on SCO) without understanding
precisely what it is.

42. Absent the production of the version, file and line information referenced in
the Court’s orders, it is very difficult, if not impossible, to answer these questions. As
described in the Declaration of Todd Shaughnessy, dated April 4, 2006, the size of the

code bases implicated by SCO’s claims is enormous.

BRI AN

System V 11 | 1 1,22 | 23,802,817 “
AIX 9 1,079,986 1,216,698,259
Dynix 37 472,176 156,757,842

Linux 597 3,485,859 1,394,381,543
Total: 654 5,150,643 2,791,640,461

43. Mr. Rochkind does not disagree that the implicated code base is enormous.
Nor does he disagree that SCO’s Chris Sontag provided sworn testimony early in the case
that it would take 25,000 person-years to review a code data base .2% the size of the stack
of code at issue. Mr. Rochkind states only that he has helped SCO to provide enough
information for IBM to find the 198 needles in the haystack. Having helped to decide
what the needles are, Mr. Rochkind may well feel as if he knows what they are. But I do
not. Nor do I believe that other independent experts would.

44, Examining the only Item specifically mentioned in Mr. Rochkind’s
declaration, Item 146, makes the point. In Item 146, SCO complains about IBM’s “Use
of Dynix/ptx for Linux development” by reference to: (1) an email asking for help with a
performance problem, (2) an email response with a suggested analysis technique
(differential profiling), (3) a technical paper written by Paul McKenney, (4) a URL
reference to scripts that might be of help, and (5) a list of 11 Linux files (names only, no
versions or lines). Contrary to Mr. Rochkind’s claim that I ignored these materials, in fact
it was by examining them closely that I concluded, as stated in my original declaration,
that SCO has provided no meaningful information about what IBM is alleged to have

done wrong.

45. The claim in Item 146 is sufficiently vague as to lead to several different

interpretations. As it takes several pages to analyze all of the possible interpretations, and

to point out all of Mr. Rochkind’s errors, I have put the analysis in Exhibit F. The details

can be found there; the summary points are simple enough:

Mr. Rochkind points out that the email cited in Item 146 contains “an actual
Linux patch” and “a specification for the files and lines being patched”. He
conveniently overlooks the fact that the patch, and the files and lines being
patched, are all the “before” version of the code. That is, the patch and
associated files contain the code that didn 't work well enough, the code that
the application of differential profiling was supposed to help repair. There is
in fact no code cited that is alleged actually to contain the use of the method.
Mr. Rochkind points out that there is “an exact URL reference to a 9-page
technical paper by McKennéy explaining the method and concept at issue.”
Indeed there is, and the paper was published in the open literature in 1995 (the
1995 IEEE MASCOTS Symposium), six years prior to the email in question.
As Mr. Rochkind points oﬁt, there are “11 Linux file paths” specified in Item
146, but, as he omits to mention, no specific version of Linux is cited. Even
so, unfortunately for his position, none of these files appears to deal with

differential profiling.*

* Item 146 indicates yet another level of difficulty in deciphering SCO’s claims: even
where SCO does specify file names (but still not versions or line numbers), IBM still has
to guess what SCO is talking about: 4 of the 11 Linux filenames in SCO’s Item 146 are
simply incorrect: there is no Linux file named arch/i386/oprofile/rmi_int.c,
arch/i386/oprofile/rmi_int.c, arch/i386/oprofile/op counter.c, or
arch/i386/oprofile/op x86 model.c. There are files whose names are close to these, and
are likely what was intended, but this presents yet another step IBM must take to
determine what SCO actually means.

18

46. As described in Exhibit F, rather than clearly state its claims to Item 146, SCO
identifies a series of dots and leaves IBM to try to connect them. The problem is they do
not connect. At most they leave IBM to guess as to which of any number of claims SCO
might actually be making. To defend itself, IBM is left to respond not just to what is at
issue -- which is not clear -- but to all of the possibilities. For Items like Item 146, there
are at least a handful of possibilities. As to other items, the possibilities are almost
innumerable. When SCO accuses IBM of misusing the internals of System V (e.g.,

Item 180) or of misusing its experience with Dynix/ptx, for example, SCO accuses IBM
of misusing any one of the millions of lines of code and the thousands of methods and
concepts contained in these operating systems.

47. Even if IBM could feasibly chase all of the possibilities held open by the Final
Disclosures (which clearly it could not do without years of additional effort), the
generality, uncertainty and ambiguity in};erent in the final disclosures are sure to lead to
games of “where’s the pea” during the expert and summary judgment phases of the case.
Based on the information SCO has provided (or, more accurately, not provided), it is
difficult to imagine any meaningful exchange of views among experts. Likewise, a court
can hardly evaluate at summary judgment what cannot be defined. Had SCO provided
full code coordinates for the allegedly misused material, games of “where’s the pea”
would not be possible. SCO’s claims could have been understood and analyzed.
Unintentional allegations could have been eliminated.

48. While I do not believe that IBM can fairly defend itself absent version, file
and line information for each of the ltems, it would -- at the risk of stating the obvious --
require a very significant period of time for IBM to conduct an investigation into the

general allegations set out in the 198 Items. Without engaging a very large corps of

19

experts, it would take years. Even then it is very unlikel;ll that IBM could succeed in
learning what is ultimately known only to SCO: its allegations.
VI. MR. ROCHKIND’S WILLFULNESS ASSERTIONS

49. Finally, Mr. Rochkind addresses IBM’s contention that SCO acted willfully in
failing to provide version, file and line information. (Rochkind Decl. 9 16-18.)

Mr. Rochkind claims that IBM is wrong to state that SCO acted “willfully in not
specifying its claims™ and wrong that “SCO has declined, as a practical matter, to tell IBM
what is in dispute.” (Rochkind Decl. 9 16.) Here again, Mr. Rochkind’s view appears to
turn on his own, self-defined view of the appropriate standard.

50. Iam not a legal expert, and do not pretend to be an authority on the meaning
of the term “willfully” for purposes of a court’s deciding whether a party should be
limited in submitting evidence in support of its claims. In responding to Mr. Rochkind’s
assertion, however, I rely on the definition of the term used in the cases provided by
counsel for IBM, e.g., Schroeder v. Southwest Airlines, 129 Fed. Appx. 481, 484-85, 2005
WL 984495 (10th Cir. 2005) (holding that “[w]illful failure means ‘any intentional failure
as distinguished from involuntary noncompliance. No wrongful intent need be shown’”);
F.D.IC. v. Daily, 956 F.2d 277, 1992 WL 43488, at *3-6 (10th Cir. 1992) (same); and In
re Standard Metals Corp., 817 F.2d 625, 628-29 (10th Cir. 1987) (same).

51. Using the definition of “willfully” set out in these cases, I have no difficulty
concluding that SCO acted “willfully” in submitting its Final Disclosures and omitting the
information called for in the Court’s orders. The Court’s orders clearly call for version,
file and line information, with respect both to code and methods and concepts.

Identifying code and methods and concepts by version, file and line of code is the

standard method of identifying operating system source code and methods and concepts

20

with specificity. SCO asked nothing less than this of IBM. There is no reason it could
not be provided here. Indeed, without it, the 198 Items are too vague and indefinite to
permit complete analysis.

52. As Mr. Rochkind’s declaration makes clear, SCO does not claim to have
assembled the Final Disclosures unwittingly. It plainly did not, as evidenced by the fact
that SCO provides version, file and line information for a number of Items that are not
challenged in this motion. There is no dispute that SCO made a deliberate decision to
provide the information it provided and the information it did not. (Rochkind Decl. 10.)
And SCO deliberately created a different standard to apply to itself than it demanded of
IBM, and the court required. SCO’s failure to provide version, file and line information
was not unknowing or inadvertent.

53. Moreover, the information omitted from SCQO’s disclosures is unquestionably
within SCO’s control. (Rochkind Decl. § 14 n.3.) The Court’s orders, as I understand
them, direct SCO (in substantial part) to make its allegations specific. For example, to the
extent SCO claims that IBM improperly used Dynix code and methods and concepts in
contributing to Linux (and the vast majority of SCO’s allegations are of this type), the
orders (on their face) require SCO to “describe, in detail, . . . with respect to any code or
method plaintiff alleges or contends that IBM misappropriated or misused, the location of
each portion of code or method in any product.” Only SCO knows what it alleges. No
amount of investigation by IBM can connect the dots. Yet SCO systematically omitted
this information from the 198 Items as described in Addendum B to my initial declaration.

54. In sum, Mr. Rochkind’s claim that SCO did not willfully withhold
information in its possession with respect to version, file and line of code misses the

point. As has been demonstrated, it is possible to obtain version, file and line information

21

with respect to methods and concepts if an effort to do so is undertaken. SCO, simply put,
has willfully failed to undertake any such effort.

VII. CONCLUSION

55. Upon careful review of Mr. Rochkind’s declaration, I find that he fails even to
address the central assertions in my opening declaration. He does not -- and could not --
dispute that SCO has not provided version, file and line infonngtion regarding each of the
198 Items at issue in IBM’s motion

56. There is no reason SCO could not have provided this information, including
with respect to methods and concepts, for which it is even more necessary, not less
necessary. SCO’s own discovery demands make the point.

57. Without the missing information, IBM lacks precisely the kind of information
needed to conduct a basic inquiry relating to the facts of SCO’s claims. Given enough
time, IBM might bé able to discover some of the informzﬁion SCO has failed to provide.
It will never be able to find all of the information, however, because only SCO knows its
allegations.

58. It s for this reason, in significant part, that I have no difficulty disagreeing
with Mr. Rochkind’s statements regarding willfulness. To my knowledge, SCO has never
argued (and could not credibly argue) that SCO’s failure to provide version, file and line

information was an oversight.

22

" 59, Ideclarelmderthcpemltyofpﬂjmythattheforcgohgismandcom

(—E&%

Date: .8 M"’Q 06
Place: Cb\ln\lb“ L}l/ mﬁ‘

EXHIBIT A

System V AIX Dynix Linux

12/12/03 e “To identify and state with specificity the source code(s) that SCO is claiming form the basis of their action against IBM.”
Order 94

e “To respond fully and in detail to Interrogatory Nos. 1-9 as stated in IBM’s First Set of Interrogatories.” (1)

Interrogatory 1: “Please identify, with specificity (by product, file and line of code, where appropriate) all of the alleged
trade secrets and any confidential or proprietary information that plaintiff alleges or contends IBM misappropriated or misused,

2

Interrogatory 3: “[P]lease . . . describe, in detail, . . . all places or locations where the alleged trade secret or confidential
or proprietary information may be found or accessed.”

Interrogatory 4: [P]lease describe, in detail, . . .with respect to any code or method plaintiff alleges or contends that IBM
misappropriated or misused, the location of each portion of such code or method in any product, such as AIX, in Linux, in
open source, or in the public domain.”

e “To respond fully and in detail to Interrogatory Nos. 12 and 13 as stated in IBM’s Second Set of Interrogatories.” (Y 2)

Interrogatory 12: “Please identify, with specificity (by file and line of code), (a) all source code and other material in Linux
.. . to which plaintiff has rights; and . . . how the code or other material derives from UNIX.”

Interrogatory 13: “[P]lease . . . describe in detail how IBM is alleged to have infringed plaintiff’s rights”

3/3/04 e “SCOis to provide and identify all “As previously ordered, SCO is to “SCO is to provide and identify

Order specific lines of code from Unix System provide and identify all specific lines of with specificity all lines of code
V from which IBM’s contributions code that IBM is alleged to have in Linux that it claims rights to.”
from AIX or Dynix are alleged to be contributed to Linux from either AIX 94
derived.” (3) or Dynix.” (2)

7/1/05 o The court sets an “Interim Deadline for Parties to Disclose with Specificity All Allegedly Misused Material Identified

Order to Date and to Update Interrogatory Responses Accordingly” and a “Final Deadline for Parties to Identify with Specificity

All Allegedly Misused Material.”

EXHIBIT B

06/24/2003 17:32 FAX 8012571800 SNELL & WILMER ' [doo2/018

COPY

Brent O. Hatch (5715)
HATCH, JAMES & DODGE
10 West Broadway, Suite 400
Salt Lake City, Utah 84101
Telephone: (801) 363-6363
Facsimile: (801) 363-6666

David Boies (admitted pro hac vice)
BOIES, SCHILLER & FLEXNER LLP
333 Main Street

Ammonk, NY 10504

Telepbone: (914) 749-8200

Facsimile: (914) 749-8300

Stephen N, Zack (admitted pro hac vice)
Mark J. Heise (admitted pro bac vice)
BOIES, SCHILLER & FLEXNER LLP
Bank of America Tower, Ste. 2800
100 Southeast Second Street
Miami, Florida 33131
- Telephone: (305) 539-8400 -
‘Facgimile: (305) 539-1307

Attorneys for Plaintiff

IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF UTAH, CENTRAL DIVISION

:)
THE SCO GROUP,)
) PLAINTIFF’S FIRST REQUEST
Plaintiff,) FOR PRODUCTION OF DOCUMENTS
) AND FIRST SET OF
\Z) INTERROGATORIES
)
INTERNATIONAL BUSINESS) Case No. 2:03CV0294DAK
MACHINES CORPORATION,)
) Judge: Dale A. Kimball
Defendant.) Magistrate David Nuffer
)

08/24/2003 17:32 FAX 8012571800 SNELL & WILMER [hoo3/018

Defendant is directed to give answers to the written interrogatories separately, fully, in
writing, under oath, and in accordance with the following definitions and instractions.
Defendant is requested to produce the documents and things in its possession, custody or control
pursuant to the document requests.

Answers to the interrogatories and all documents and things responsive to the document
requests must be served on the undersigned attorneys for The SCO Group at the offices of Boies,
Schiller & Flexner LLP, 100 Southeast Second Straet, Suite 2800, Miami, Florida 33131 within
30 days of service of these interrogatories and document requests.

DEFINITIONS TRU 8

For purposes of these interrogatories and requests for production of documents, the
following definitions and instructions apply.
A. Definitions.

1. The term “ATX" shall mean the UNIX-based operating system distributed and/or
developed by IBM, including all prior versions, releases and maintenance
modifications. .

2, The term “concerning” shall mean relating to, referring to, reflecting, describing,
evidencing, referencing, discussing ar constituting,

3. The term “describe” shall mean in the case of an event or circumstance, to set forth in
detail the date, time, place, individuals or entities involved and context and content of
the event ;)r circumstance, ‘-

4, The term “document” shall be deemed to include every record of every type including,
without limitation, information stored on amy electromagnetic storage device, or

computer, any written, printed, typed, recorded, stored, or graphic matter, however

06‘/_2‘4./2003 17:32 FAX 8012571800 ‘SNELL & WILMER ' 004/016

produced, reproduced, or existing in the possession, custody, or control of Defendant,
or any agent, employee, or attamsy of the Defendant, and all drafts, notes, or
preparatory material concerned with said document, and every additional copy of such
record or document where such copy containg any commentary, notation, or other
change whatsoever that does not appear on the original or other copy of the document
produced. "Document" shall be deemed also to include any summary of a document or
documents called for hereafter,

The term “Dynix” shall mean the UNIX-based operating system distributed and/or
developed by Sequent Computer Systems, Inc. and/or IBM, including all prior
versions, releases, derivative works, methods, and modifications.

The termis "IBM,” “Defendant” "you,” "your," and any synonym thereof and .

derivatives therefrom are intended to and shall emhrace IBM and include its-parents,
subsidiaxies, divisions, or affiliates and any corporate predecessor or successor of any
of them, including Sequent Computer Systems, Inc., and, in addition all of the
Defendant’s attorneys and accountants, and all of its respective agents, servants,
associates, employees, representatives, investigators, officers, directors and others who
are or have been in possession of or may have obtained information for or ou behalf of
such Defendant in any manner with respect to any matter referred to in the pleadings in
the above-styled case.
The tﬂ'm“‘idcntify" shall mean:
a. in the case of a natural person, to state the full name, curvent or last
known job title and position, current or last known address, current or

last known home and work telephone numbers, and current or last

08/24/2003 17:33 FAX 8012571800 . SNELL & WILKER @005/016

known electronic mail address, and to indicate the basis of that person’s
knowledge, including but not limited to the identification of documents

and communications and a description of bis’her personal involvement

in any transaction, mecting, software development, marketing, or other

activity re]aﬁng in any way to the allegations of the Complaint and any'
defenses;

. in the case of any entity other than a natural person, to state its name,
address, principal place of business and, if applicable, place of
incotporaﬁo_n and a contact person at the entity;

. in the case of a document, to state the author(s), title, subject matter,
date, placg : source of publication of the document and substance of the
document; . .

. in the case of an oral communication, to give a complete description of
such oral communication, including bit not limited to: (i) the speakes(s)
and acﬁml or intended recipient(s) or witnesses of the communication;
(i) the date of the communication; and (iii) the substance of the
cormmunication;

. in the case of alleged trade secrets or confidential or proprietary
information, whether computer code, methods or otherwise, to give a

complete and detailed description of such trade secrets or confidential or

proprietary information, including but not limited to an identification of
the specific lines and portions of code claimed as trade secrefs or

confidential or proprietary mformaﬂcm, and the location (by module

4

06/24/2003 17:33 FAX 8012571800 SNELL & WILMER ldio08/018

10.

name, file name, sequence number or otherwise) of those lines of code
within any larger software product or property.

f in the case of an alleged right, to give a completed and detailed
description of such right, including but not limited to: (i) the issuer of
the right; (ii) the date the right became effective; (iii) the date the right
expired; and (fv) any limitations placed upon such right.

The term “open somrve” shall mean any software code that is made available in source
code form without any confidentiality restrictions, including but not limited to any
code made available under the General Public License, the BSD license, or the MIT
license.

The term "person" shall be deemed to include natural persons, partnerships, firms, and
corporations, and all of their subsidiaries or divisions, and, in the case of partnerships, |
firms, and corporations, the individual member(s) or agent(s) thereof.

The term “source code” shall mean the human-readable form of a computer program

. written in the original and preferred form for human ingpection and modification, and

includea but is not Hmited to source code listings; compiler and/or assembler output
listings for such source code; source code listings for macros or “includes” (both
executable and mapping) listings vsed in such source code; job cuntrol language files;
and/or other files required to create an executable version of a program, inclnding but
not limited to user interface componexts; panels; screen definitions and help text; and

e-lists.

08/24/2003 17:33 FAX 8012571800 SNELL & WILMER ' @oo7/018

B. Instrutions,

1. Unless otherwise indicated, all requests and interrogatories are from January 1, 1999 to
present.

2. Information requested in these interrogatories shall include information within the
knowledge or possession of any of Defendmt’s agents, employees, attorneys,
investigators or any other persons, firms or entities directly or indirectly subject to
Defendant’s control in any way whatsoever.

3. Each interrogatory shall be answered in its entirety. If any interrogatory or subsection
thereof cannot be answered in full, it shall be answered to the fullest extent possible
with an explanation as to why a complete answer is not provided.

4. If there is a claim of privilege as to any communieation concerning information
requested by these interrogatories, specify the privilege claimed, the communication
and/or answer to which that claim is made, the topic discussed in the communication
and/or answer to which that claim is made, the topic discussed in the communication
and the basis upon which the claim is asserted.

5. These interrogatories are continuing in nature and require supplemental or additional
responses in accordance with Rule 33 of the Federal Rules of Civil Procedure.

6. All documents produced in respanse to these requests shall be produced in the same
order as they are kept or maintained in the ordinary course of business and, where
multiple lz;ages or documents are assembled, collated, lgrouped, or otherwise attached,
shall not be separated or disassembled.

08/24/2003 17:33 FAX 8012871800 SNELL & WILMER [doo8/018

7. With respect to any document responsive to this request that is withheld from
production based upon a claim of privilege, please provide the information required
pursuant to Rule 26(b)(5) of the Federal Rules of Civil Procedure,

8 If, for reasons other than a claim of privilege, you refuse to produce any document
requested herein, state the grounds upon which the refusal is based with sufficient
gpecificity to permit a determination of the propriety of such refusal.

9. If there are no documents responsive to any paragraph or subparagtaph set forth in the

requests, please provide a written response 50 stating,

These requests are contiming and, pursuant to Rule 26(¢) of the Federal Rules of Civil -

Procedure, require. further amd' supplemental production by Defendant whenever

Defendant acquires, makes, or locates additional documents between the time of the

initial production hereunder and the time of the trial in this action.

REQUESTED DOCUMENTS

1. All documents concerning or relating to any agreements entered into with AT&T
relating to UNIX, including but not limited to the agreements attached vo the First
Amended Complaint.

2. All versions or iterations of ATX source code, modifications, methods and/or
derivative works from May 1999 to the present, including but not limited to version
43 and‘abovc.

3. All versions or iterations ofeu'l::Sequent Dynix source code, derivative works,

modifications and/or methods from January 1, 1999 to the present.

08/24/2003 17:34 FAX 8012571800 "SNELL & WILHER @009/018

4. All documents concerning IBM’s efforts, if any, to maintain the confidentiality of
UNIX source code, derivative works, medifications, and/or methods.

5. Al documents concerning IBMs efforts, if any, to maintain the confidentiality of
AIX source code, derivative works, modifications, and/or methods.

6. All documents concemin_g}.,_IBM.'s efforts, if any, to maintain the confidentiality of
Sequent Dynix source oode, derivative works, modifications, and/or methods.

7. All documents concerning TBM’s efforts, if any, to restrict distribution of Unix source
code, derivative wotks, modifications, and/or methods.

8. All documents concerning IBM?’s efforts, if any, to restrict distribution of AIX source
code, derivative works, modifications, and/or methods.

9. All docurients toncerning IBM's effats, if any; to restrict distribution of Sequent
Dynix source code, derivative works, modifications, and/or methods.

10. All documents concerning Prerequisite Source Licenses, including but not limited to
all instances in which IBM required persons or entities to obtain a Prerequisite Source
License under paragraph 2.2(a) of its contract with its customers.

11. All contributions made without confidentiality restrictions by IBM or anyane under
its control including, but not limited to, source code, binary code, derivative werks,
methods, and modifications to Open Source Development Lab, Linus Torvalds, Red
Hat or any other entity,

12. All documents that identify any person or entity to whom IBM has prowded UNIX
source code, derivative works, modifications and/or methods. o

13. All documents that identify any person or entity to whom IBM has provided AIX

source code, derivative works, modifications and/or methods.

08/24/2003 17:34 FAX 8012571800 . SNELL & WILMER @o10/016

14. All documents that identify any person or entity to whom IBM has provided Sequent
Dynix source code, derivative works, modifications and/or methods.

15. All documents that identify'.'any person at IBM and Sequent who had access to UNIX
source code, derivative waorks, modifications and/or methods.

16. All documents that identify any person at IBM and Sequent who had access to ALX
source code, derivative works, modifications and/or methods.

17.Alldocumentsthatidex;ﬁfyanypmonatIBMandSequentwhohadaccmm
Sequent Dynix source cods, derivative works, modifications and/or methods.

18. All documents, agreements and correspondence between IBM or any person or entity
under IBM’s control and Linus Tarvalds including, but not limited to, those with or
copied to Samy Palmxsano.

19. All documents, agmemgnﬁ and correspondence with Open Source Development Lab.

20. All documents, agreements and correspondence with Red Hat.

21, All documents, agrecments and_oorrespondcnce with SuSe.

22. All documents, agreements and correspondence between IBM and Novell regarding
UNIX, including but not limited to all correspondence with Jack Messman, Chris
Stane and/or Novell’s counsel.

23. All documents, agmeménts and correspondence between IBM and Sunta Cruz
Operation regarding UNIX. "

24. All documents, sgreements and comrespondence between IBM and Caldera,

25. All documents, agreements and correspondence between IBM and The SCO Group.

26. All documents identifying any [BM personnel who are or were employed or working
at the Linux Technology Center.

06/24/2003 17:34 FAX 8012571800 SNELL & WILMER do11/018

27, All documents identifying any IBM persormel who are or wese employed or working
at the Linux Center of Competency.
28. All documents conceming Project Monterey.

29. All documents concerning any UNIX source code, derivative works, modifications or
methods disclosed by IBM to any third party or to the public.

30. All documents conceming any AIX source code, derivative works, modifications or
methods disclosed by IBM to any third party or to the public.

31. All documents concerming any Sequent Dynix source code, derivative works,
modifications or methods disclosed by IBM to any third party or to the public.

" 32. All documents concerning any UNIX source code, derivative works, modifications ot
raethods found in Linux, open source, or the public domamn:

33. All documents concerning any AIX source code, derivative warks, modifications or |
methods found in Linux, open source, or the public domain.

34. All documents concerning any Sequent Dynix source code, derivative works,

- modifications or methods found in Linux, open source, or the public domain.

35. All documents concerning any contributions to Limux or to open source made by IBM
and/or Sequent.

36, All documents sufficient to show IBM’s organizational and personnel structure,
including but not limited to orgamizational charts, flow charts and personnel
directories. |

37. All documents concerning any statement, affidavit, declaration, or opinion in IBM’s

possession relating to contributions by IBM to open source, including but not limited

10

06/24/2003 17:35 FAX 8012571300 SNELL & WILMER @o12/018

to those statements identified in the Complaint made by Messrs. Mills, LeBlanc and
Strassmeyer,

38. All documents concerning the Open Source Developer’s Class, including any
guidelines relating thereto.

39. All documents concerning export controls for any UNIX source code, derivative
works, modifications or methods contributed to open source, including all portions of
ATX, amd Dynix and their derivative works, modifications, or methods.

46. All documents concerning IBM’s use of Intel processors prior to January 1, 1998.

41. All documents concerning IBM’s use of Intel processors after Jamary 1, 1998.

‘42, All documents concemning IBM’s contributions to development of -the 2.4 and 2.5
Linux Kernel.

43. All documents conceming I8M’s First Affirmative Defense that the Complaint fails
to state a claim vwpon which relief can be granted.

44. All documents concerning IBM’s Second Defense that Plaintiff’s claims are barred

- becanse IBM has not engaged in any unlawful or unfeir business practices, and IBM’s
conduct was privileged, performing the exercise of an absolute right, proper and/or
Jjustified.

45. All documents conceming IBM’s Third AfﬁrmaﬁwAle Defense that Plaintiff lacks
standing to purme its claims against IBM,

46, All mu concerning IBM’s Fourth Affirmative Defense that Plaintiff’s claims
are barred, in whole or in part, by the applicable statutes of limitations.

11

08/24/2003 17:35 FAX 8012571800 SNELL & WILMER d1013/018

47. All documents concemmg IBM’s Fifth Affirmative Defense that Plaintiff’s claims are
barred, in whole or in part, by the economic loss doctrine or the independent duty

doctrine.

43. All documents conceming IBM’s Sixth Affirmative Defense that Plaintiff's claims -

are batred by the doctrines of laches and delay.
49. All documents conceming IBM’s Seventh Affirmative Defense that Plaintiff’s claims
are barred by the doctrines of waiver, estoppel and unclean hands:
" 50. All dociments concerning IBM's Eighth Affirmative Defense that PlaintifPs claims
are, in whole or in part, preempted by federal law.
- 31. All documents concerning IBM’s Ninth Affirmative Defense that Plaintiff's claims
are improperly venued in this district.
- 52. All documents used, referred to, identified, or relied upon in responding to Plaintiff's
First Set of Interrogatories.

i inl

12

06/24/2003 17:35 FAX 8012571800 . SNELL & WILMER @o14/018

INTERROGATORIES
. Identify the name and address of the person(s) answering these interrogatories, and, if
applicable, the persons’ official position or relationship with Defendant?
. List the names and addresses of all persons who are believed ar known by you, your
agents, or your attomeys to haye,eny knowledge conceming any of the issues of this
lawsuit; and specify the subjeotmntter about which the witmess has knowledge.
. If you intend to cauanyexpeu;w_iﬂtnesa at the trial of this case, state, 2s to each such
expert witness, the name and business address of the witness, the witness’ qualifications
as an expert, thesubjectmattetuponwhichthewitnessiémpectadto testify, the
substance of the facts and opinionsto which the witness is expected to testify, and a
summary of the grounds for each opinion.
: Identify all persons who have or had access to-{UNIX source code, AIX source code and
Dynix source code, including derivative works, modifications, and methods. For each
such person, set forth precisely the materials to which he or she had access,
- Identify all IBM or Sequent persomnel that work or warked on developing source code,
derivative works, modifications or methods for AIX, Dynix and Ligux, specifying for
each person their precise contributions to each.
DATED this 24" day of June, 2003. A

By: Wé@

. Brent O, Hatch
HATCH, JAMES & DODGE

David Boies

Stepben N. Zack

Mark J. Heise

BOIES, SCHILLER & FLEXNER LLP
Attorneys for Plaintiff

13

08/24/2003 17:38 FAX 8012871800

Brent O. Hatch (5715)
HATCH, JAMES & DODGE
10 West Broadway, Suite 400
Salt Lake City, Utah 84101
Telephone: (801) 363-6363
Facsimile; (801) 363-6666

David Boies (admitted pro hac wce)
BOIES, SCHILLER & FLEXNER LLp
333 Main Street

Armonk, NY 10504

Telephone: (914) 749-8200

Facsimile: (914) 749-8300

Stephen N. Zack (admitted pro hac vice)
Mark J, Heise (admitted pro hao vice)
BOIES, SCHILLER & FLEXNER LLP
Bank of America Tower, Ste. 2800 .
100 Southeast Second Street

Miami, Florida 33131

Telephone:. (305) 539-8400

Facsimile: (305) 539-1307

Attorneys for Plaintiff

SNELL & WILMER

COPRY

@o15/018

IN THE UNITED STATES DISTRICT COURT

FOR THE DISTRICT OF UTAH, CENTRAL DIVISION

THE SCO GROUP,
Plaintiff,
v.

INTERNATIONAL BUSINESS
MACHINES CORPORATION,

Defendant.

LUVVVVVVVVVV

CERTIFICATE OF SERVICE OF
PLAINTIFF'S FIRST REQUEST FOR
PRODUCTION OF DOCUMENTS AND
FIRST SET OF INTERROGATORIES

Case No. 2:03CV0294DAK
Judge: Dale A. Kimball

08/24/2003 17:38 FAX 8012871800 SNELL & WILMER @o16/018

Plaintiff, The SCO Group, hereby certifies that a true and comrect copy of PlaintifP’s First
Requsst for Production of Documents and First Set of Inte&ogatorlw was served on Defendant
International Business Machines Corporation on this 24™ day of June, 2003, by hand delivery on
their counsel of record as follows:

Alan L. Sullivan, Fsq.

Snell & Wilmer L.L.P.

15 West South Temple, Ste. 1200
Gateway Tower West

Salt Lake City, Utah 84101-1004

Copies by U.S. Mail to

Evan R. Chesler, Esq.

Craveth, Swaine & Moore LLP
Worldwide Plaza

825 Eighth Avenue

New York, NY 10019

Donald J. Rosenberg, Esg.
1133 Westchester Avenue
‘White Plains, New York 10604

HATCH, JAMES & DODGE

By‘(%sidé

Brent O. Hatch
Attorneys for Plaintiff

180677

08/24/2003 17:31 FAX 8012571800 .. SNELL & VILMER , @oo1/018

Snell &. Will’[ler SALT LAKE CITY, UTAH

L.LP.
LAW OFFICES PUOENIX, ARIZONA
15 West South Temple, Suits 1200 TUESAN, ARIZONA
Gatoway Tower West IRVINY, CALIFORNIA
Salt Lake City, Utsh 84101
(801) 257-1900 DENVER, COLORADO
Fax: (801) 257-1800
www.swisw.com LAS V1 GAS, NBVADA
FACSIMILE TRANSMISSION
DATE: March 25, 2003 , TIME IN:
| TIME OUT:
TO: ‘ -]
_ . baxMNunber hore Numbear
David R. Marriott (212) 474-3700 (212) 474-1000

Peter Ligh
CRAVATH SWAINE & MOORE

FROM: Todd M. Shaughnessy PHONE: 801-257-1937

RE: Caldera v, IBM
MESSAGE:

David and Peter, _
Attached is a copy of Plaintiff"s First Request for Production of Documents and First Set of
Interrogatories.

Please contact me if you have any questions.

Todd. -

ORIGINAL DOCUMENT: Will not be sent NUMBER OF PAGES (Including Cover):

CONFIRMATION NO.: CLIENT MATTERNO.: 43649.0001

PLEASE RETURN TO: Debbie PERSONAL FAX: No

REQUESTOR: Todd M. DIRECT LINE: 801-257-1937
Shaughnessy

IF YOU HAVE NOT PROPERLY RECEIVED THIS TELECOPY, PLEASE CALL US AT (801) 257-1922.
OUR FACSIMILE NUMBER IS (801) 287-1800,

THE INFORMATION CONTAMNED IN THIS FAGSIMILE MESSAGE IS ATTORNEY BRIVILEGED AND CONFIDENTIAL INFORMATION INTENDED ONLY FOR
THE USE OF THE INDIVIDUAL OR ENTITY NAMED ABOVE. IF THE READER OF THIS MESSAGE I8 NOT THE INTENDED RECIPIENT, OR THE
EMPLOYEE OR AGENT RESPONSIBLE TO DELIVER T TO THE INTENDED RECIPIENT, YOU ARE HEREBY NOTIFIED TMAT ANY DISSEMINATION,
DISTRIBUTION OR COPYING OF THIS COMMUNICATION IS STRICTLY PROHIBITED, IF YOU HAVE RECEVED THIS COMMUNICATION IN ERROR,
PLEASEEIMMEDIa'Islé'.Y’ NOTIFY US BY TELEPHONE, AND RETURN THE ORIGINAL MESSAGE TO LS AT THE ABOVE ADDRESS VIA THE U.S. POSTAL
SERVIGE. THAN 2

246427.)

EXHIBIT C

EXHIBIT C

TSCOtem T EC0's Description of DIsclosure. ol e
“\;&’“ ; % r & : o “ e s

3 NUMA Aware locks from ptx to Linux

4 Disclosure of Dynix/PTX NUMA-aware spinlocks and statement that
they have been ported to Linux.

5 Disclosure of Dynix/PTX "jlock” by porting it to Linux.

6 Disclosure of "decoder ring" with ptx primitives in column 1 and the
closest Linux equivalent in column 2

8 Confirmation that all ptx optimizations are in patch submitted to Linux
by D. Sarma

10 Port of highly paralle! distributed lock manager from ptx to Linux

11 Port of Sequent SPIE test suites to Linux

12 Evidence of disclosure of ptx RCU into Linux

15 Detailed disclosure of ptx NUMA-aware locks for adaptation and use in
Linux

16 O_Direct ptx SPIE tests ported to Linux and also disclosed in
documentation to "Andrea”

17 Port of discontinguous memory code from ptx to Linux 2.5

18 150,000 lines of testing code ported from ptx spie test suites to Linux
Test Project. Additional test suites and test cases ported from ptx and
AlX to Linux.

19 Disclosure of Dynix/PTX implementations of NUMA-aware locking.

20 Confirmation that ptx was used as as source reference for Linux
development

22 Port of ptx NUMA code to Linux

24 Confirmation that ptx was used as source reference for Linux
development

25 Use of ptx and AIX technology as roadmap for Linux in various
significant areas (locks, counters, search trees, allocators and RDBMS)

27 Transferring ptx source code to AtX developers

28 Disclosure of implementation of reference counters from ptx to Linux

31 implementation of ptx locking algorithms in Linux

32 Submission of NUMA APIs from Dynix/ptx and AlX to open source,
release of krlock from ptx to Linux and AlX, and suspected release of
NUMA-aware locks to Linux

33 Authorization for open-source discosure of AlX and ptx NUMA-aware
locking primitives

39 Use of ptx as source reference for programming Linux

4 Use of ptx as source reference for memory programming in Linux

55 Disclosure of Dynix/PTX code and method for avoiding a lock via "cut-
and-paste from ptx code”.

64 Use of Dynix/ptx as source reference for programming memory virtual
address space in Linux

79 Confirmation that an earlier RCU patch was based on the Dynix/PTX
algorithm.

82 Disclosure that patch is based on the Dynix/PTX implementation, and

that is uses a per-CPU context-switch counter.

Page 1

2372554 _1.xls

EXHIBIT C

84 Discloses RCU patches, and acknowledges that they were based on
original Dynix/PTX code.

87 Disclosure of Dynix/PTX RCU code, documentation, and API.

91 Dynix/ptx RCU facilities in AIX

92 Information that IBM contributed Dynix/PTX code to Linux from
"michael,"” who appears to be a former Sequent
employee. Possibly M. Anderson.

98 Use of ptx NUMA internals in Linux

99 NUMA aware spinlocks developed originally for ptx ported to Linux

100 Sequent Lock Manager (SLM) ported to from ptx to Linux 2.4 using
RCU locks and patches of other ptx primitives

102 Suspected disclosure of AlX APIs to SuSE for use in Linux and
disclosure of training slideset on ptx scheduler for use in Linux
scheduler maintenance

103 Discosure of AlX and ptx APIs for NUMA in Linux

104 Confirmation of intended disclosure of design documents and API
descriptions from ptx to SuSE

105 Suspected disclosure of AlX and ptx design documents SuSE

107 Reference to ptx source when creating Linux RCU

108 Suspected use of SMP scaling data points from AlX and ptx for use in
Linux .

109 Use of ptx design information (Macsyma scripts) to do rclock
performance analysis in Linux for NUMA and SMP

112 Suspected disclosure of System V package tools for use by Verizon in
Linux :

143 Disclosure of ninteen test suites from ptx to Linux Test Project

144 Disclosure of Dynix/ptx and AIX algorithms and techniques via the K42
development project

145 Evidence of IBM's building on ptx performance and correctness
experience in coding Linux

146 Use of Dynix/ptx for Linux development

147 Delivery of 400 ptx test cases to Linux Test Project

148 Coding linux equivalent for kmem goodptr ptx primitive; ported ktest rc
from ptx to linux

149 Emulation of the SVr4 system implementation in memory mapping

165 Disclosure of STREAMS implementation from SVR4

166 Disclosure of STREAMS implementation from SVR4

167 Disclosure of SVR4 mapping of virtual memory page 0 as "read only"

169 Copying from SVR4 ELF specifications for IBM S390 Linux
implementation

170 Memory mapping page 0 as "read only,” copying from SVR4

171 Use of SVR4 ABI as source reference in Linux programming, revealing
details of SVR4 ELF/ABI specification and use of SVR4 ELF/ABI
specification to develop Linux

172 Attempts to reference of SV43/i386 specs from SCO website as source

reference for Linux programming and revealing information from
SVR4/ABI specification

Page 2

2372554_1.xls

EXHIBIT C

SRR e

Use of SVR4 ABI as source reference for programming Linux

174 Proposal for use of SVR4 internals for Linux development

175 Use of SVR4 as source reference for programming memory mapping
system call in Linux

176 Use of ptx as source reference for programming ESR in Linux

177 Use of SVR4 as source reference in programming VFS for Linux

178 Disclosure of Enterprise Volume Management System code from AIX
to Linux

179 Disclosure of Enterprise Class Event Logging code from AlX and Dynix
to Linux

180 Use of SVR4 internals as a reference for programming Linux

182 Disclosure of Dynix/PTX Direct /O Test Suite.

189 Disclosure of Dynix/ptx MPIO technology

192 Disclosure of Dynix/ptx virtual memory implementation techniques

193 Disclosure of Dynix/ptx fast walk and dcache implementation
techniques

281 Port of ptx ktest-rc from ptx to Linux

282 Use of ptx performance counters in programming Linux

284 Dynix/ptx implementation of RCU

285 Dynix/ptx implementation of RCU

286 Dynix/ptx implementation of RCU

287 Dynix/ptx implementation of RCU

288 Dynix/ptx implementation of RCU

289 AlX network test tool

201 Port of pix lightweight reader-writer lock

292 Dynix/ptx kmem

293 Dynix/ptx totimeout

Page 3

2372554_1.xls

EXHIBIT D

<& ADDISON-WESLEY PROFESSIONAL COMPUTING SERIES

IC

*w ¥ P T B G AT U R TR R MW ELIITI 37T LT I RIS TR 1 £ AT T A ALY T T

b

ﬁ. T e , L AT RS
i
I8

Y

»Updated Class

.)
R, et

| v
Fres

MARC J. ROCHKIND

xii

e I

Preface

To sort things out, it’s not enough to have complete documentation, just as the
Yellow Pages isn’t enough to find a good restaurant or hotel. You need a guide
that tells you what’s good and bad, not just what exists. That’s the purpose of this
book, and why it’s different from most other UNIX programming books. I tell you
not only how to use the system calls, but also which ones to stay away from
because they’re unnecessary, obsolete, improperly implemented, or just plain
poorly designed.

Here’s how I decided what to include in this book: I started with the 1108 func-
tions defined in Version 3 of the Single UNIX Specification and eliminated about
590 Standard C and other library functions that aren’t at the kernel-interface level,
about 90 POSIX Threads functions (keeping a dozen of the most important),
about 25 accounting and logging functions, about 50 tracing functions, about 15
obscure and obsolete functions, and about 40 functions for scheduling and other
things that didn’t seem to be generally useful. That left exactly 307 for this book.
(See Appendix D for a list.) Not that the 307 are all good—some of them are use-
less, or even dangerous. But those 307 are the ones you need to know.

This book doesn’t cover kernel implementation (other than some basics), writing
device drivers, C programming (except indirectly), UNIX commands (shell, vi,
emacs, etc.), or system administration.

There are nine chapters; Fundamental Concepts, Basic File 1/O, Advanced File I/O,
Terminal 1/0, Processes and Threads, Basic Interprocess Communication,
Advanced Interprocess Communication, Networking and Sockets, and Signals
and Timers. Read all of Chapter 1, but then feel free to skip around. There are lots
of cross-references to keep you from getting lost.

Like the first edition, this new book includes thousands of lines of example code,
most of which are from realistic, if simplified, applications such as a shell, a full-
screen menu system, a Web server, and a real-time output recorder. The examples
are all in C, but I've provided interfaces in Appendices B and C so you can pro-
gram in C++, Java, or Jython (a variant of Python) if you like.

The text and example code are just resources; you really learn UNIX program-
ming by doing it. To give you something to do, I've included exercises at the end
of each chapter. They range in difficulty from questions that can be answered in a
few sentences to simple programming problems to semester-long projects.

I used four UNIX systems for nuts-and-bolts research and to test the examples:
Solaris 8, SuSE Linux 8 (2.4 kemel), FreeBSD 4.6, and Darwin (the Mac OS X

24

Chapter 1: Fundamental Concepts

way to do it. Also, it makes it easier later if you’re looking for a bug and are try-
ing to compare the code to the documentation. You don’t have to solve a little
puzzle in your head to compare the two.

1.4 Error Handling

Testing error returns from system calls is tricky, and handling an error once you
discover it is even tricker. This section explains the problem and gives some prac-
tical solutions.

1.4.1 Checking for Errors

Most system calls return a value. In the read example (Section 1.3.1), the num-
ber of bytes read is returned. To indicate an error, a system call usually returns a
value that can’t be mistaken for valid data, typically —1. Therefore, my example
should have been coded something like this:
if ((amt = read(fd, buf, numbyte)) == ~-1) {

fprintf (stderr, "Read failed!\n");

gxit (EXIT_FAILURE) ;
} .

Note that exit is a system call too, but it can’t return an error because it doesn’t
return. The symbol EXIT_FAILURE is in Standard C.

Of the system calls covered in this book, about 60% return —1 on an error, about
20% return something else, such as NULL, zero, or a special symbol like
SIG_ERR, and about 20% don’t report errors at all. So, you just can’t assume that
they all behave the same way—you have to read the documentation for each call.
I’ll provide the information when I introduce each system call.

There are lots of reasons why a system call that returns an error indication might
have failed. For 80% of them, the integer symbol errno contains a code that indi-
cates the reason. To get at errno you include the header errno.h. You can use
errno like an integer, although it’s not necessarily an integer variable. If you’re
using threads, errno is likely to involve a function call, because the different
threads can’t reliably all use the same global variable. So don’t declare: errno
yourself (which used to be exactly what you were supposed to do), but use the
definition in the header, like this (other headers not shown)

Error Handling 25

#include <errno.h>

if ((amt = read(fd, buf, numbyte)) == -1) {
fprintf (stderr, "Read failed! errmo = %d\n", errno);
exit (EXIT_FAILURE) ;

}

If, say, the file descriptor is bad, the output would be:
Read failed! errmno = 9

Almost always, you can use the value of errno only if you’ve first checked for
an error; you can’t just check errno to see if an error occurred, because its value
is set only when a function that is specified to set it returns an error. So, this code
would be wrong: |

amt = read(fd, buf, numbyte);

if (exrrmo != 0) { /* wrong! */
fprintf (stderr, "Read failed! errno
exit (EXIT _FAILURE);

$d\n", errno);

}
Setting errno to zero first works:

errno = 0;

amt = read(fd, buf, numbyte);

if (errnoc != 0) { /* bad! */
fprintf (stderr, "Read failed! errno = %d\n", errno);
exit (EXIT FAILURE); '

} .

But it’s still a bad idea because:

+ If you modify the code later to insert another system call, or any function
that eventually executes a system call, before the call to read, the value of
errno may be set by that call. _

» Not all system calls set the value of errno, and you should get into the habit
of checking for an error that conforms exactly to the function’s specification.

Thus, for almost all system calls, check errno only after you’ve established that
an error occurred. ¢

Now, having wamed you about using errno alone to check for an error, this
being UNIX, I have to say that there are a few exceptions (e.g., sysconf and
readdir) that do rely on a changed errno value to indicate an error, but even
they return a specific value that tells you to check errno. Therefore, the rule

26

Chapter 1: Fundamental Concepts

about not checking errno before first checking the return value is a good one,
and it applies to most of the exceptions, too.

The errno value 9 that was displayed a few paragraphs up doesn’t mean much,
and isn’t standardized, so it’s better to use the Standard C function perror, like
this:
if ((amt = read(fd, buf, numbyte)) == -1) {

perror ("Read failed!"); N

exit (EXIT FATLURE);
3

Now the output is:
Read failed!: Bad file number

Another useful Standard C function, strerror, just provides the message as a
string, without also displaying it like perror does.

But the message “Bad file number,” while clear enough, isn’t standardized either,
so there’s still a problem: The official documentation for system calls and other
functions that use errno refer to the various errors with symbols like EBADF, not
by the text messages. For example, here’s an excerpt from the SUS entry for
read: '

[EAGAIN]

The O_NONBLOCK flag is set for the file descriptor and the process would be delayed.
[EBADF]

The fildes argument is not a valid file descriptor open for reading.
[EBADMSG]

The file is a STREAM file that is set to control-normal mode and the message waiting to
be read includes a control part.

It’s straightforward to match “Bad file number” to EBADF, even though those
exact words don’t appear in the text, but not for the more obscure errors. What
you really want along with the text message is the actual symbol, and there’s no
Standard C or SUS function that gives it to you. So, we can write our own func-
tion that translates the number to the symbol. We built the list of symbols in the
code that follows from the errno.h files on Linux, Solaris, and BSD, since many
symbols are system specific. You’ll probably have to adjust this code for your

Error Handling 27

own system. For brevity, not all the symbols are shown, but the complete code is

on the AUP Web site (Section 1.8 and [AUP2003]).

static struct {
int code;
char *str;
} errcodes(] =
{
{ EPERM, "EPERM" },
{ ENOENT, "ENOENT" },
{ EINPROGRESS, "EINPROGRESS" },
{ ESTALE, "ESTALE" },
#ifndef BSD
{ ECHRNG, "ECHRNG" },
{ EL2NSYNC, "ELZNSYNC* 1},

{ ESTRPIPE, "ESTRPIPE" 1},

{ EDQUOT, "EDQUOT" },
#ifndef SOLARIS

{ EDOTDOT, "EDOTDOT" 1},

{ EUCLEAN, "EUCLEAN" },

{ ENOMEDIUM, "ENOMEDIUM" },

{ EMEDIUMTYPE, °"EMEDIUMTYPE" },
#$endif
#endif

{ 0, NULL}
};

const char *errsymbol (int errno_arg)
{

int i;

"for (i = 0; errcodes[i].str != NULL; i++)
if (errcodes{i].code == errno_arg)
return errcodes(i].str;
return " [UnknownSymbol]*;
} .

Here’s the error checking for read with the new function:

if ((amt = read(fd, buf, numbyte)) == -1) {
fprintf (stderr, "Read failed!: %s (errno = %d4; %s)\n*
strerror (errno), errno, errsymbol(errno));
exit (EXIT FAILURE) ;

28

Chapter 1: Fundamental Concepts

Now the output is complete:

Read failed!: Bad file descriptor (errno = 9; EBADF)

It’s convenient to write one more utility function to format the error information,
so we can use it in some code we’re going to write in the next section:

char *syserrmsg{char *buf, size_t buf_max, const char *msg, int errno_arg)
{

char *errmsg;

if (msg == NULL)
msg = "??7?";

if (errno_arg == 0)
snprintf (buf, buf_max, "%s", msg);
else {

errmsg = Sstrerror (errno_arg); :
snprintf (buf, buf_max, "$s\n\t\t*** %5 (%d: \"%s\") **** msg,
errsymbol (errno_arg), errno_arg,
errmsg != NULL ? errmsg : "no message string");
) .
return buf;

}
We would use syserrmsg like this:

if ((amt = read(fd, buf, numbyte)) == -1) {
fprintf (stderr, "$s\n", syserrmsg(buf, sizeof (buf),
"Call to read function failed", errno)):
exit (EXIT_FAILURE);
} .

with output like this:
Call to read function failed

% EBADF (9: "Bad file descriptor") *

What about the other 20% of the calls that report an error but don’t set errno?
Well, around 20 of them report the error another way, typically by simply return-
ing the error code (that is, a non-zero return indicates that an error occurred and
also what the code is), and the rest don’t provide a specific reason at all. I'll pro-
vide the details for every function (all 300 or so) in this book. Here’s one that
returns the error code directly (what this code is supposed to do isn’t important
right now):

struct addrinfo *infop;

if ((r = getaddrinfo("localhost®, "80", NULL, &infop)) != 0) ({

Error Handling 29

fprintf(stderr, "Got error code %4 from getaddrinfo\n", r});
exit (EXIT_FAILURE) ;
}

The function getaddrinfo is one of those that doesn’t set errno, and you can’t
pass the error code it returns into strerror, because that function works only
with errno values. The various error codes returned by the non-errno functions
are defined in [SUS2002] or in your system’s manual, and you certainly could
write a version of errsymbol (shown earlier) for those functions. But what
makes this difficult is that the symbols for one function (e.g., EAI_BADFLAGS for
getaddrinfo) aren’t specified to have values distinct from the symbols for
another function. This means that you can’t write a function that takes an error
code alone and looks it up, like errsymbol did. You have to pass the name of the
function in as well. (If you do, you could take advantage of gai_strerror,
which is a specially tailored version of strexrror just for getaddrinfo.)

There are about two dozen functions in this book for which the standard
[SUS2002] doesn’t define any errno values or even say that errno is set, but for
which your implementation may set errno. The phrase “errno not defined”
appears in the function synopses for these.

Starting to get a headache? UNIX error handling is a real mess. This is unfortu-
nate because it’s hard to construct test cases to make system calls misbehave so
the error handling you’ve coded can be checked, and the inconsistencies make it
hard to get it right every single time. But the chances of it getting any better soon
are zero (it's frozen by the standards), so you’ll have to live with it. Just be

careful! A
-

1.4.2 Error-Checking Convenience Macros for C

It’s tedious to put every system call in an if statement and follow it with code to
display the error message and exit or return. When there’s cleanup to do, things
get even worse, as in this example:

if ((p = malloc(sizeof (buf))) == NULL) {
fprintf {stderr, "%$s\n", syserrmsg(buf, sizeof(buf},
"malloc failed", errno)):;
return false;
] .
if ((fdin = open(filein, O_RDONLY)) == -1) {
fprintf (stderr, "%s\n", syserrmsg{buf, sizeof(buf),
vopen (input) failed", errno));

30

Chapter 1: Fundamental Concepts

free(p);

return false:
} .
if ((fdout = open(fileout, O_WRONLY)) == -1) {

fprintf (stderr, “"%s\n®, syserrmsg(buf, sizeof (buf),

"open (ocutput) failed", errno)):

{(void)close(fdin);

free(p);

return false;

}

The cleanup code gets longer and longer as we go. It’s hard to write, hard to read,
and hard to maintain. Many programmers will just use a goto so the cleanup code
can be written just once. Ordinarily, gotos are to be avoided, but here they seem
worthwhile. Note that we have to carefully initialize the variables that. are
involved in cleanup and then test the file-descriptor values so that the cleanup
code can execute correctly no matter What the incomplete state.

char *p = NULL;
int fdin = -1, fdout = -1;

if ((p = malloc(sizeof(buf))) == NULL) {
fprintf (stderr, "%s\n", syserrmsg(buf, sizeof(buf),
"malloc failed", errno)):;
goto cleanup; "
}
if ((£din = open(filein, O_RDONLY))} == -1) {
fprintf (stderr, "%s\n", syserrmsg(buf, sizeof(buf),
‘open (input) failed", errno));
goto cleanup;
}
if ((fdout = open(fileout, O_WRONLY)) == -1) {
fprintf(stderr, “"%s\n", syserrmsg(buf, sizeof (buf),
"open (output) failed", errno)):
goto cleanup;
}

return true;

cleanup:
free(p):
if (fdin != -1)
(void)close(£fdin);
if (fdout != -~1)

(void)close(fdout) ;
return false;

Still, coding all those ifs, fprintfs, and gotos is a pain. The system calls
themselves are almost buried!

Error Handling 31

We can streamline the jobs of checking for the error, displaying the error informa-
tion, and getting out of the function with some macros. I’ll first show Liow they’re
used and then how they’re implemented. (This stuff is just Standard C coding, not
especially connected to system calls or even to UNIX, but I’ve included it because
it’ll be used in all the subsequent examples in this book.)

Here’s the previous example rewritten to use these error-checking (“ec’””) macros.
The context isn’t shown, but this code is inside of a function named fen:

char *p = NULL;
int fdin = -1, fdout = -1;

ec_null(p = malloc (sizeof (buf)))
ec_negl(fdin = open(filein, O_RDONLY))
ec_negl(fdout = open{fileout, O_WRONLY))

return true;

EC_CLEANUP_BGN

free(p):

if (f£din !'= -1)
(void)close (£din);

if (fdout != -1)

(void)close (fdout) ;
return false;
EC_CLEANUP_END

. - .
Here’s the call to the function. Because it’s in the main function, it makes sense
to exit on an error.

ec_false(fcn())
/* other stuff here */
exit (EXIT_SUCCESS);

EC_CLEANUP_BGN
exit (EXIT_FAILURE) ;
EC_CLEANUP_END

Here’s what’s going on: The macros ec_null, ec_negl, and ec_false check
their argument expression against NULL, —1, and false, respectively, store away
the error information, and go to a label that was placed by the EC_CLEANUP_BGN
macro. Then the same cleanup code as before is executed. In main, the test of the
return value of fcn also causes a jump to the same label in main and the pro-
gram exits. A function installed with atexit (introduced in Section 1.3.4)
displays all the accumulated error information:

32

Chapter 1: Fundamental Concepts

ERROR: 0: main [/aup/cl/errorhgndling.c:41] fen ()
1: fen [/aup/cl/errorhandling.c:15) f£din = open(filein, 0x0000)
% ENOENT (2: "No such file or directory") ***

What we see is the errno symbol, value, and descriptive text on the last line. It’s
preceded by a reverse trace of the error returns. Each trace line shows the level,
the name of the function, the file name, the line number, and the code that
returned the error indication. This isn’t the sort of information you want your

end users to see, but during development it’s terrific. Later, you can change the

macros (we’ll see how shortly) to put these details in a log file, and your users can
see something more meaningful to them. '

We accumulated the error information rather than printing it as we went along
because that gives an application developer the most freedom to handle errors as

he or she sees fit. It really doesn’t do for a function in a library to just write error

messages to stderr. That may not be the right place, and the wording may not be
appropriate for the application’s end users. In the end we did print it, true, but that
decision can be easily changed if you use these macros in a real application.

So, what these macros give us is:

» Easy and readable error checking
* An automatic jump to cleanup code

» Complete error information along with a back trace

The downside is that the macros have a somewhat strange syntax (no semicolon at
the end) and a buried jump in control flow, which some programmers think is a
very bad idea. If you think the benefits outweigh the costs, use the macros (as I
will in this book). If not, work out your own set (maybe with an explicit goto
instead of a buried one), or skip them entirely.

Here’s most of the header file (ec.h) that implements the error-checking macros
(function declarations and a few other minor details are omitted):

extern const bool ec_in_cleanup;
typedef enum {EC_ERRNO, EC_EAI} EC_ERRTYPE;

#define EC_CLEANUPF_BGN\
ec_warn();\
ec_cleanup_bgn:\

{\
bool ec_in_cleanup;\
ec_in_cleanup = true;

S it R e N AR TS

Error Handling 33

#define EC_CLEANUP_END\
}

#define ec_cmp(var, errrtn}\

A\
assert(!ec_in_cleanup);\
if ((intptr_t) (var) == (intptr_t) (errrtn)) {\
ec_push(__func_ , __FILE , _ LINE _, #var, errno, EC_ERRNO);\
goto ec_cleanup_bgn;\
FAN :
}

#define ec_rv(var)\
\
int errrtn;\
assert(!ec_in_cleanup);\
if {(errrtn = (var)) != 0) {\
ec_push(___func__, _ FILE__, _ LINE__ , #var, errrtn, EC_ERRNO);\
goto ec_cleanup_bgn;\’
JAN '
}

#define ec_ai(var)\
A\ ’
int errrtn;\
assert(lec_in_cleanup);\
if ((errrtn = (var)) != 0) {\
ec_push(_ fune___, _ FILE__, __LINE _, #var, errrtn, EC_EAT);\
goto ec_cleanup_bgn;\ ' '
JAN
}

#define ec_negl(x) ec_cmp(x, -1)
#define ec_null(x) ec_cmp(x, NULL)
#define ec_false(x) ec_cmp(x, false)
#define ec_eof(x) ec_cmp(x, EOF)
#define ec_nzero(x)\ '

{\ -
if ((x) t= 0)\

EC_FAIL\

#define EC_FAIL ec_cmp(0, 0)

#define EC_CLEANUP goto ec_cleanup_bgn;

34 Chapter 1: Fundamental Concepts

#define EC_FLUSH(str)\
{\
ec_print();\
ec_reinit();\

}

Before I explain the macros, I have to bring up a problem and talk about its solu-
tion. The problem is that if you call one of the error-checking macros (e.g.,
ec_negl) inside the cleanup code and an error occurs, there will most likely be
an infinite loop, since the macro will jump to the cleanup code! Here’s what I’'m
worried about:

EC_CLEANUP_BGN

free(p); g

if (fdin != -1)
ec_negl{ close(fdin))

if (fdout != -1) k

ec_negl(close(fdout))
return false;
EC_CLEANUP_END

-

It looks like the programmer is being very careful to check the error return from
close, but it’s a disaster in the making. What’s really bad about this is that the
loop would occur only when there was an error cleaning up after an error, a rare
situation that’s unlikely to be caught during testing. We want to guard against
this—the error-checking macros should increase reliability, not reduce it!

QOur solution is to set a local variable ec_in_cleanup to true in the cleanup
code, which you can see in the definition for the macro EC_CLEANUP_BGN. The
test against it is in the macro ec_cmp—if it’s set, the assert will fire and we’ll
know right away that we goofed.

(The type bool and its values, true and false, are new in C99. If you don’t
have them, you can just stick the code
typedef int bool;

#define true 1
#define false 0

in one of your header files.)

To prevent the assertion from firing when ec_cmp is called outside of the cleanup
code (i.e., a normal call), we have a global variable, also named
ec_in_cleanup, that’s permanently set to false. This is a rare case when it’s
OK (essential, really) to hide a global variable with a local one.

Error Handling 35

‘Why have the local variable at all? Why not just set the global to true at the start
of the cleanup code, and back to false at the end? That won’t work if you call a
function from within the cleanup code that happens to use the ec_cmp macro
legitimately. It will find the global set to true and think it’s in its own cleanup
code, which it isn’t. So, each function (that is, each unique cleanup-code section)
needs a private guard variable.

Now I'll explain the macros 6ne-by~one:

¢ EC_CLEANUP_BGN includes the label for the cleanup - code
(ec_cleanup_bgn), preceded by a function call that just outputs a warning
that control flowed into the label. This guards against the common mistake
of forgetting to put a return statement before the label and flowing into the
cleanup code even when there was no error. (I put this in after I wasted an
hour looking for an error that wasn’t there.) Then there’s the local
ec_in_cleanup, which I already explained.

+ EC_CLEANUP_END just supplies the closing brace. We needed the braces to
create the local context.

« ec_cmp does most of the work: Ensuring we’re not in cleanup code, check-
ing the error, calling ec_push (which I’ll get to shortly) to push the location
information (__FILE__, etc.) onto a stack, and jumping to the cleanup code.
The type intptr_t is new. in C99: It’s an integer type guaranteed to be
large enough to hold a pointer. If you don’t have it yet, typedef it to be a
long and you’ll probably be OK. Just to be extra safe, stick some code in
your program somewhere to test that sizeof (void *) is equal to
sizeof (long). (If you’re not familiar with the notation #var, read up on
your C—it makes whatever var expands to into a string.)

e ec_rv is similar to ec_cmp, but it’s for functions that return a non-zero
error code to indicate an error and which don’t use errno itself. However,
the codes it returns are errno values, so they can be passed directly to
ec_push. ’ -

e ec_ai is similar-to ec_rv, but the error codes it deals with aren’t errno
values. The last argument to ec_push becomes EC_EAT to indicate this.
(Only a couple of functions, both in Chapter 8, use this approach.)

« The macros ec_negl, ec_null, ec_false, and ec_eof call ec_cmp
with the appropriate arguments, and' ec_nzero does its own checking.
They cover the most common cases, and we can just use ec_cmp directly
for the others.

36

Chapier 1: Fundamental Concepts

* EC_FAIL is used when an error condition arises from a test that doesn’t use
the macros in the previous paragraph.

* EC_CLEANUP is used when we just want to jump to the cleanup code.

* EC_FLUSH is used when we just want to display the error information, with-
out waiting to exit. It’s handy in interactive programs that need to keep going.
(The argument isn’t used.)

The various service functions called from the macros won’t be shown here, since

they don’t illustrate much about UNIX system calls (they just use Standard C),
but you can go to the AUP Web site [AUP2003] to see them along with an expla-
nation of how they work. Here’s a summary:

* ec_push pushes the error and context information passed to it (by the
ec_cmp macro, say) onto a stack.

« There’s a function registered with atexit that prints the information on the-
stack when the program exits:

static void ec¢_atexit_fecn(void)
(.

ec_print();
} .

* ec_print walks down the stack to print the trace and error information.

* ec_reinit erases what’s on the stack, so error-checking can start with a
fresh trace.

* ec_warn is called from the EC_CLEANUP_BGN code if we accidentally fall
into it.

All the functions are thread-safe so they can be used from within multithreaded

programs. More on what this means in Section 5.17.

2

1.4.3 Using C++ Exceptions

Before you spend too much time and energy deciding whether you like the “‘ec
macros in the previous section and coming up with some improvements, you
might ask yourself whether you'll even be programming in C. These days it’s
much more likely that you’ll use C++. Just about everything in this book works
fine in a C++ program, after all. C is still often preferred for embedded systems,
operating systems (e.g., Linux), compilers, and other relatively low-level soft-
ware, but those kinds of systems are likely to have their own, highly specxahzed,
error-handling mechanisms.

C++ provides an opportunity to handle errors with exceptions, built into the C-++
language, rather than with the combination of gotos and return statements that

Error Handling 37

we used in C. Exceptions have their own pitfalls, but if used carefully they’re eas-
ier to use and more reliable than the “ec” macros, which don’t protect you from,
say, using ec_null when you meant to use ec_negl.

As the library that contains the system-call wrapper code is usually set up just for
C, it won’t throw exceptions unless someone’s made a special version for C++.
So, to use exceptions you need another layer of wrapping, something like this for
the close system call:

class syscall_ex |
public:
int se_errmo;

syscall_ex(int n)
: se_errno(n)
{1}

void print (void)
{ .

fprintf(stderr, "ERROR: %s\n", strerror(se_errno));

} £
}i

class syscall {
public:
static int close(int £d)
O

int r;

if ((r = ::close(fd)) == -1)
throw(syscall_ex(errno));

return r;

}
Yo
Then you just call syscall::close instead of plain close, and it throws an
exception on an error. You probably don’t want to type in the code for the other
1100 or so UNIX functions, but perhaps just the ones your application uses.

If you want the exception information to include location information such as file
and line, you need to define another wrapper, this time a macro, to capture the
.preprocessor data (e.g., via _,_LINE_),I so here’s an even fancier couple of
classes:

13. We need the macro because if youjust put __LINE__ and the others as direct arguments to the syscall_ex construc-
tor, you get the location in the definition of class syscall, which is the wrong place.

38

Chapter 1: Fundamental Concepts

1.5

class syscall_ex {
public:
int se_errno;
const char *se_file;
int se_line;
c¢onst char *se_func;

syscall_ex(int n, const char *file, int line, const char *func)
: se_errno(n), se_file(fi;e), se_line(line), se_func(func)
{} :
void print (void)
{
fprintf (stdexrr, "ERROR: %s ([%s:%d %s()]\n",
strerror (se_erxno), se_file, se_line, se_func);

Y

c¢lass syscall {
public:
static int close(int fd, const char *file, int line, const char *func)

{

int r;

if ((r = ::close(fd)) == -1)
throw(syscall_ex(errno, file, line, func));

return r;

)

#define Close(fd) (syscall::close(fd, __FILE LINE , _ func_))

—

This time you call Close instead of close.

You can goose this up with a call-by-call trace, as we did for the “ec” macros if

you like, and probably go even further than that.

There’s an example C++ wrapper, Ux, for all the system calls in this book that’s

described in Appendix B. '

UNIX Standards

Practically speaking, what you’ll mostly find in the real world is that the commer-
cial UNIX vendors follow the Open Group branding (Section 1.2), and the open-
source distributors claim only conformance to POSIX1990, although, with few
exceptions, they don’t bother to actually run the certification tests. (The tests have

now been made freely available, so future certification is now more likely.)

EXHIBIT E

In The Matter Of:

THE SCO GROUP, INC,, v.
INTERNATIONAL BUSINESS MACHINES CORPORATION

SANDEEP GUPTA
March 17, 2006

CONFIDENTIAL

LEGALINK MANHATTAN

420 Lexington Avenue - Suite 2108

New York, NY 10170
PH: 212-557-7400 / FAX: 212-692-9171

GUPTA, SANDEEP - Vol. 1

i _d

LEGALINK

4 WORDWAYE COMPANY

Page 1

Page 3

1 i SANDEEP GUPTA - CONFIDENTIAL
R CONFIDENTIAL 2 THE VIDEO TECHNICIAN: This is
IN THE UNITED STATES DISTRICT COURT 3 the video operator speaking, Douglas
3 FOR THE DISTRICT OF UTAH 4 Huebner of LegaLink Action Video, 420
. ﬂgﬁgfffcfﬁ.ﬂﬂiﬂ?’ _ ¢ CIVILACTION 5 Lexington Avenue, New York, New York.
Defendant, ’ 6 Today is March 17th, 2006 and the time is
6 7 9:08.
5 V- _ 8 We're at the offices of Boies,
INTERNATIONAL BUSINESS 9 Schiller, 150 Kennedy Parkway, Short
8 MACHINES CORPORATION, : 10 Hills, New Jersey to take the video
9 Defendant/Counterdaim- : NO. 2:03CV-294 DAK 11 deposition of Sandeep Gupta in the matter
o e 12 of the SCO Group, Inc., versus
1 13 International Business Machines Corp., in
12 MARCH 17, 2006 14 the United States District Court for the
3 9:08 A.M. 15 District of Utah, Civil Action Number
o 16 2:03CV-294 DAK,
14 Videotaped deposition of SANDEEP GUPTA, € .
15 takeln e!.?, o?;nui‘:.oé :tnu?e offices of 17 Will counsel please introduce
16 BOIES, SCHILLER & FLEXNER LLP, 150 John F. 18 themselves for the record.
17 Kennedy Parkway, Short Hills, New Jersey, 19 MR. BURKE: Mike Burke from
18 before Debra Saplo Lyons, a Registe . .
19 Dkt Rovoor. £ Caraiiad rotime 20 Cravath, Swaine & Moore on behalf of IBM.
20 Reporter, a Certified Shorthand Reporter and 21 MS. MIRANDA-KREYSZIG: Ana
21 Notary Public of the States of New Jersey 22 Miranda-Kreyszig from Cravath, Swaine &
22 andNew York 23 Moore on behalf of IBM.
24 24 MR. FILOR: Daniel Filor from
25 25 Boies, Schiller & Flexner on behalf of
Page 2 Page 4
; APPEARANCES: 1 SANDEEP GUPTA - CONFIDENTIAL
3 BOIES, SCHILLER & FLEXNER LLP 2 plaintiff, the SCO Group. _
Attorneys for the Plaintiff 3 THE VIDEO TECHNICIAN: Will the
4 10 North Pear! Street .
Alba :y’ New Yo 13207 ; court report?r.pnlease swear the witness,
5
BY: DANIEL P. FILOR, ESQUIRE 6 SANDEEP GUPTA, having been
S 7 first duly sworn, was examined and
8 CRAVATH, SWAINE & MOORE LLP 8 testified as follows:
Attomeys for the Defendant 9 --- .
9 825 Eighth Avenue
New York, NevvevnYod(10019-7475 i(i) EXAMINATION
10 ---
BY: MICHAEL P. BURKE, ESQUIRE 12 BY MR. BURKE:
11 AND .
13 Q. Good morning, Mr. Gupta.
TERESA MIRANDA-KREYSZIG, .
12 ANA MIRANDA-KREYSZIG, ESQUIRE 14 A. Good morning.
13 15 Q. My name's Mike Burke. I'm a
1 ALSO PRESENT: 16 lawyer for IBM and I'm here to ask you some
15 17 questions today.
DOUGLAS HUEBNER, VIDEQ TECHNICIAN 18 A. Uh-huh.
i? LEGALINK ACTION VIDEO 19 Q. Could you just state your
18 20 current home address for the record?
;g 21 A, Absolutely. Ilive in 4 Villa
21 22 Farms Circle, Monroe, New Jersey. That's
22 23 Zip code 08831,
%2 24 Q. And have you ever been deposed
P 25 before?
LEGALINK MANHATTAN
800-325-3376 www.legalink.com

|
|
|
|
|
|
|
|
|
|
|
|
\
1 (Péges 1to 4)

800-325-3376

www.LegalInk.com

Page 69 Page 71
1 SANDEEP GUPTA - CONFIDENTIAL 1 SANDEEP GUPTA - CONFIDENTIAL '
2 the, quote, Date of first issue: 16 May 2 you?
3 2003, dose quote, and then, quote, Next 3 A. That's correct,
4 renewal date 16 May 2006, close quote. 4 Q. Okay. Do you know who would
5 Do you see that? 5 have this responsibility?
6 A, Yes. 6 A. 1don't know if I want to give
7 Q. Do you know if there's any 7 the names out of people right now. I don't
8 plans to renew this certification? 8 know if that's something --
9 A. Idon't know. This definitely 9 MR. FILOR: Well, there's a
10 not one of my job function. 10 confidentiality order in the case, so you
11 Q. Okay. Do you know whose job 11 can disclose those.
12 function it would be? 12 THE WITNESS: Okay. So under
13 A. It would be the product 13 that, I -- I want to protect names of the
14 management. ~ 14 people --
15 Q. Okay. And let me -- as of 15 BY MR. BURKE:
16 today, could you just describe your job 16 Q. Sure.
17 functions? 17 A. --onmyteam.
18 I understand you're the Chief 18 Stan Krieger is the Senior
19 Technology Officer of SCO; is that correct? 19 System Test Manager.
20 A. That's correct. 20 Q. Okay.
21 Q. Okay. 21 A. He would definitely know about
22 A. That's my title. 22 this.-
23 Q. Could you -- okay. 23 Q. Krieger?
24 Could you describe for me what 24 A. K-R-I-E-G-E-R.
25 your job functions are today? 25 Q. Okay. Anyone else?
Page 70 Page 72 |- - -
1 SANDEEP GUPTA - CONFIDENTIAL 1 SANDEEP GUPTA - CONFIDENTIAL Y
2 A. My job function today is to 2 A. I think he's the -- he would
3 bring new products and new technologies to 3 know the most and there may be other people.
4 SCO and that's I build the new products and 4 Q. Do you know the names of any of
5 1 bring in new technologies into those 5 the other folks?
6 products. 6 A. His team comprises of
7 Q. So as Chief Technology Officer 7 engineers, and manager level people. One
8 of SCO, you don't have responsibility for 8 other person would be George Grinlinger.
9 the -- strike that. 9 George and Grinlinger, he may know.
10 As Chief Technology Officer of 10 Q. Do these folks you referred to
11 SCO, you don't have responsibility for SCO's 11 have other job duties beyond certification
12 work with the X/Open brand program; correct? 12 tests?
13 A. As a Chief Technology Officer, 13 A, That's correct.
14] don't personally have a direct 14 Q. Okay.
15 responsibility. If there are certification 15 MR. BURKE: Bless you.
16 tests that we have, then my test team does 16 THE WITNESS: Coffee is already
17 runit 17 empty. I'll wait till you guys are ready
18 Q. Have you ever supervised a 18 ~ MR. BURKE: Okay. Mark that
19 certification test? 19 for me.
20 A. No, those are supervised by my 20 MR. FILOR: Since I brought it
21 directors who manage those droups. 21 up, why don't I put on the record now
22 Q. Okay. And the directors are -- 22 that we're going to be marking this
23 you said -- strike that. 23 transcript as Confidential under the
24 You referred to your directors. 24 Protective Order.
25 Are those people who are -- who report to 25 (Exhibit 1478, string of emails
18 (Pages 69 to 72)
LEGALINK MANHATTAN

800-325-3376

Page 265 Page 267
1 SANDEEP GUPTA - CONFIDENTIAL 1 SANDEEP GUPTA - CONFIDENTIAL
2 Q. Andit -- it sounded like you 2 Calls for legal conclusion.
3 did. 1Ididn't understand what you said, 3 THE WITNESS: I have to look at
4 but... 4 the source code.
5 At what point does -- does 5 BY MR, BURKE:
6 something go from just a general description 6 Q. Okay. What would you do if you
7 to a method? 7 looked at the source code?
8 MR. FILOR: Objection to form. 8 A. Ilook at various steps that
9 THE WITNESS: I am not an 9 are taken, specific for that particular
10 expert in this area when it becomes from 10 method.
11 concept to methods. 11 Q. Okay. So in order to determine
12 BY MR. BURKE: 12 what a particular method or concept is, you
13 Q. Okay. Oh, my question wasn't 13 would actually have to look at the source
14 from concepts to methods. 14 code?
15 It was just from a general 15 MR. FILOR: Objection to form.
16 description to a concept or method. 16 THE WITNESS: In some cases,
17 MR. FILOR: Objection to form. 17 yes.
18 THE WITNESS: Istill -- I'm 18 BY MR. BURKE:
19 not an expert to a general -- you know, 19 Q. Okay. Imean, I-1
20 what do you mean by general description 20 understand you just articulated a few from
21 to a concept or method? 21 memory and --
22 BY MR. BURKE: 22 A. Yeah.
23 Q. Okay. What -- what kind of 23 Q. --I'm impressed with that, but
24 expert would you think you'd have to be? 24 in general, would you have to look at the
25 A, Oh,I-- 25 source code to be able to accurately
Page 266 Page 268
1 SANDEEP GUPTA - CONFIDENTIAL 1 SANDEEP GUPTA - CONFIDENTIAL ;
2 MR. FILOR: Objection to form. 2 describe a method or concept in UNIX?
3 THE WITNESS: -- I think you're 3 MR. FILOR: Objection to form.
9 asking some legal question. So if you 4 THE WITNESS: That's my
15 can clarify the question, maybe I can 5 opinion, yes.
6 answer. 6 BY MR. BURKE:
7 BY MR. BURKE: 7 Q. Ithink you testified that
8 Q. Okay. What I'm asking is -- 8 there were thousands of methods and concepts
9 let's see. 9 inSystemV --
10 Well, if I described RCU 10 A. Uh-huh,
11 locking as reading a number of threads, 11 Q. --isthatright?
12 would that describe the method of RCU 12 If we had a week to do it,
13 locking? 13 would you be able to describe each one of
14 MR. FILOR: Objection to form. 14 them without referring to the source code?
15 THE WITNESS: Reading a number 15 A. No, it would be very hard.
16 of threads, probably not. 16 Q. Okay. And why it -- why would
17 BY MR, BURKE: 17 it be very hard?
18 Q. Okay. Is that part of the 18 A. Because it took three decades
19 method? 19 for UNIX development to get where it is.
20 A. Tt could be. 20 MR. BURKE: Okay. All right.
21 Q. Okay. How would you determine 21 That's all I've got.
22 whether a particular description was 22 THE WITNESS: Thank you.
23 specific enough to describe an aspect of 23 MR. FILOR: Okay.
24 System V as a method? 24 THE VIDEO TECHNICIAN: That's
25 MR. FILOR: Obijection to form, 25 it?
67 (Pages 265 to 268)
LEGALINK MANHATTAN

www.Legalink.com

EXHIBIT F

EXHIBIT F

Item 146 of SCO’s Final Disclosure, as well as Mr. Rochkind’s declaration, leave
as an exercise for the technically informed reader the task of determining how five pieces
of information fit together to tell a coherent story of alleged wrongdoing. A reader
without a technical background must simply either assume that the pieces fit or believe
SCO’s assertion that they do. In fact, they do not and neither Item 146 nor Mr. Rochkind
ever explains what the alleged wrongdoing was. Mr. Rochkind simply asserts that SCO
has assembled five things: some emails that prove Linux development occurring, a paper
published in the open literature that describes a method, a patch that contains some
changes to code, a pointer to scripts (sequences of commands to the computer), and the
names of some Linux files that happen to contain the term “profile.” This, Mr. Rochkind
asserts, constitutes enough detail.

One has only to read the emails carefully and pay attention to dates to see that the
pieces do not fit together as Mr. Rochkind claims. The events appear to have occured as
follows: IBM employee Maneesh Soni made changés to the code in the Linux file
“file.c”, as part of an experiment to try to improve the performance of the Linux virtual
file system. The changes are shown in the form of a patch,] but there is no indication this
patch was ever sent outside IBM. From the context, it is obvious that this was an internal
experiment, and if it did not yield positive results, the change would never be proposed to
the Linux community. According to the email, the pétch did not produce positive results

(Soni writes “Now the problem is that instead of [the change yielding an] increase in

' A “patch” lists just the changes made (e.g., delete the first four lines of the file, insert these seven
new lines, modify the 15™ line as follows..., etc.). It is used because listing the changes is typically much
shorter than listing the entire modified file.

performance we are seeing a drop (near about 30%).” In response Soni asked IBM
employee Paul McKenney for advice. McKenney suggested using a technique called
“differential profiling,” pointing Soni to a paper published in 1995 that explained the
technique, and to some scripts that might be helpful.

The technique McKenney suggested was an analysis technique. To the extent that
the scripts may have implemented the technique, they were an analysis tool that existed
outside the scope of the operating system itself, either Dynix/ptx or Linux. The paper
describing the technique does not mention Dynix/ptx at all. It discusses “programs” as
the object of investigation using this technique.

Paying attention to the dates shows that the patch SCO cites (inside email #1)
predates the email where McKenney suggests using the alleged “method”, yet SCO states
their evidence “contains an actual Linux patch”, implying that the patch is the evidence
that the method was carried into Linux. Yet the patch was written before the differential
profiling method was even mentionéd to Soni.

IBM is left, as is the reader, to figure out how SCO might say the pieces fit
together. We are missing any clear allegation. Instead we have at least three possible
allegations that can serve as SCO’s cups for a “where’s the pea?” game. But is there a
pea? Only SCO knows.

What might SCO’s allegation be?

(1) SCO might be alleging that “differential profiling,” as a method, was part of
the Dynix/ptx operating system, and was re-implemented for and contributed to Linux by
IBM. This is the most obvious interpretation of SCO’s allegation, because Mr. Rochkind

states very clearly “The method and concept is completely explained by the paper ...”.

(Rochkind Decl. q 14.) However, this allegation is inconsistent with SCO’s statements
that the cited patch was an offending contribution, because the patch is an experimental
change to the Linux file system, and predates McKenney’s proposed use of the
differential profiling technique. To interpret SCO’s allegation as the initial sentence of
this paragraph proposes, would be to suggest that SCO showed willful disregard for basic
technical integrity of their allegation.

(2) SCO might be alleging that a technique (and/or tools) developed to analyze
Dynix/ptx performance was subsequently used to analyze (and improve) Linux file system
performance. This allegation would be consistent with Disclosure Items 109 and 289,
which seem to say that an internal tool was used first with Dynix/ptx, then later was used
with Linux. However, this allegation would again not be consistent with SCO’s
statements that the cited patch was an offending contribution, since the patch is an
experimental change to the Linux file system, and predates McKenney’s proposed use of
the differential profiling technique. This allegation would be especially inconsistent with
SCO’s cited location(s) in Linux of the offending method, which is in files named
“profile”, not in the Linux file system or in “file.c”. If this were SCO’s allegation, there
is no evidence that McKenney’s suggestion was ever acted upon, and if it was, there is no
evidence Soni was able to figure out his problem. And if he was, there is no evidence
Soni came up with a better patch, which had positive results, and if he did, there is no
evidence any patch resulting from all this analysis was ever submitted to the Linux
community, much less accepted into Linux.

(3) SCO might be alleging that that “differential profiling” is a method tainted by

contact with Dynix/ptx, and that something McKenney, Soni, or Sarma contributed to

Linux subsequent to the cited emails was derived from the idea of using differential
profiling to analyze Linux file system performance. IBM could ask its employees and
former employees for the full story of what happened after this email was sent, and then
try to prove the negative with respect to this interpretation of the claim. This
interpretation would be consistent with SCO’s suggestions that IBM knows better than
SCO what it did “wrong”, and therefore no additional particularity is required. This
interpretation of item 146 would demonstrate SCO’s disregard for the court’s rejection of
the idea that it’s IBM who knows what the claim really means, not SCO.

Each of the previous interpretations is plausible in light of the fact that SCO’s five
components of evidence for Item 146 simply do not connect to form a clear allegation.
Each of the previous interpretations could be defended, but the expert analysis required
for each defense is substantially different. Item 146 is so vague that nothing prevents
SCO from moving from one interpretation to the next in the face of IBM’s response.

IBM is left to deal with all possible interpretations, which would require at least three
times the effort and gives'SCO at least three times the opportunity to avoid scrutiny of its

claim.

