512

B T TER AR B Ll P e T T T A]

United States Patent: 5,032,979 ‘ Page 1 of 30

USPTO PATENT FULL-TEXT AND IMAGE DATABASE

[‘M “ Quick HAduanced”PatNum H Help]

[Hit List][Previous][Next [Bottom]

[View Cart][ndd to Cart

Images
(24 0£27)
- United States Patent 5,032,979
Hecht, et al. : » July 16, 1991

 Distributed security auditing subsystem for an operating system
Abstract

" The distributed auditing subsystem invention runs in a UNIX-like operating system environment with a
hierarchical file system. The invention provides an audit trail of accesses to the objects it protects and
maintains and protects that audit trail from modification or unauthorized access or destruction. The audit
- data generated by the invention is protected so that read access to it is limited to those who are
authorized for audit data. The invention enables the recording of events which are relevant to the
maintenance of the security of the system, such as the use of identification and authentication
mechanisms, the introduction of objects into a user's address space, the deletion of such objects, actions
taken by computer operators and system administrators and/or system security officers, and other
. security relevant events. The invention generates an audit record for each recorded event which includes
the date and time of the event, the user, the type of event, and the success or failure of the event. The
invention performs an on-line compression of the audit trail log file using a UNIX-type daemon process.
The audi daemon process has a restartable feature that enables it to recover after node failures.

Inventors: Hecht; Matthew S. (Potomac, MD); Johri; Abhai (Gaithersburg, MD); Wei; Tsung T.
(Gaithersburg, MD); Steves; Douglas H. (Austin, TX)
~ Assignee: International Business Machines Corporation (Armonk, NY)
Appl. No.: 542688
‘Filed: June 22, 1990

Current U.S. Class: 726/25; 713/164

Intexrn'l Class: HO4L 009/00; GO6E 015/16; GO6F 013/00
Field of Search: 364/200 MS File,900 MS File 380/4,25 371/11.1
References Cited [Referenced By]

U.S. Patent Documnents
4558413 Dec., 1985 Schmidt et al. 364/200.

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PT02&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

AL

United States Patent: 5,032,979 Page 2 0f 30

4621325 Nov., 1986 Naftzger et al. 364/406.
4672572 Jun., 1987 Alsberg 364/900.
- 4720782 Jan., 1988 Kovalein 364/200.

4734865 Mar., 1988 Scullion et al. 364/478.
4757533 Jul., 1988 Allen et al. 380/25.

4825354 Apr., 1989 Agrawal et al. 364/200.

4970644 Nov., 1989 Berneking et al. 364/422.

4977594 Dec., 1990 Shear - 380/4.

Other References

The Design of the Unixoperating System--Maurice J. Bach, 1986, pp. 422-429.
An Introduction to Database Systems--C. J. Date, 1983, pp. 11-13.
J. Picciotto, "The Design of an Effective Auditing Subsystem," Proceedings of the 1987
IEEE Symposium on Security and Privacy, Oakland, Calif,, pp. 13-22 (Apr. 1987).

T. A. Berson, et al., "KSOS--Development Methodology for a Secure Operating System,"
Proc. of the Natl. Comp. Conf., vol. 48, AFIPS Press, 1979, Montvale, N.J., pp. 365-372.
S. Kramer, "LINUS IV--An Experiment in Computer Security," Proc. of the 1984
Symposium on Security and Privacy, Oakland, Calif., Apr. 1984, pp. 24-33.

G. J. Popek et al., "UCLA Secure Unix," Proc. of the Natl. Comp. Conf., vol. 48, AFIPS
Press, 1979, Montvale, N.J., pp. 355-364.
V. D. Ghigor, et al., "On the Design and Implementation of Secure Xenix Workstations,"

" IEEE Symposium on Security, 4/86, pp. 102-117.

Primary Examiner: MacDonald; Allen R.
Assistant Examiner: Ray; Gopal C.
Attorney, Agent or Firm: Hoel; John E.

Claims

 What is claimed is:

1. A distributed, security auditing subsystem for performing on-line auditing of events in each of a
plurality of client processors in a system and performing on-line compression of an audit trail of said
events in a server processor in the system, comprising:

a first security audit daemon in a first client processor in said system for monitoring the occurrence of a
~ defined set of events effecting data security of said first client processor and preparing first security
audit records in response to the occurrence therein of said events;

a distributed services means in said first client processor, for performing a remote mount of a security
audit directory in a server processor in said system containing first temporary bin files associated with
said first client processor;

- said first audit daemon in said first client processor writing said first audit records to said first temporary
" bin files in said remotely mounted security audit directory in said server processor;

http://patfi.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 : Page 3 of 30

said first audit daemon in said first client processor further including a data compression means for
operating on records in said first temporary bin files in said server processor containing said first audit
records, to compress selected records therein and write the compressed records with a first type
identifier to a permanent audit trail file in said remotely mounted security audit directory in said server
processor;

a second security audit daemon in a second client processor in said system for monitoring the occurrence
of a defined set of events effecting data security of said second client processor and preparing second
security audit records in response to the occurrence therein of said events;

a distributed services means in said second client processor, for performing a remote mount of said
security audit directory in said server processor containing second temporary bin files associated with
said second client processor;

said second audit daemon in said second client processor writing said second audit records to said
second temporary bin files in said remotely mounted security audit directory in said server processor;
and

said second audit daemon in said second client processor further including a data compression means for
operating on records in said second temporary bin files in said server processor containing said second
audit records, to compress selected records therein and write the compressed records with a second type
identifier to said permanent audit trail file in said remotely mounted security audit directory in said
SEerver processor.

2. The distributed auditing subsystem of claim 13, wherein said permanent audit trail file further
corprises:

a plurality of data frames organized with a header portion, a compressed bin portion, and a trailing
portion;

said header portion including the number of bytes in the compressed bin associated therewith and the
identity of a client node which was the source of the audit information in said bin;

said trailing portion including the number of bytes in said associated compressed bin and the identity of
said client node; and

‘said byte count in said header portion and said byte count in said trailing portion enabling said
‘permanent audit trail file to be searched in either the forward or reverse direction.

3. A method for distributed, security auditing of events occurring in each of a plurality of client
processors in a system and the compression of auditing information generated thereby in a server
processor in the system, comprising the steps of:

monitoring the occurrence of a defined set of events effecting data security of a first client processor in
said system, with a first security audit daemon running in said first client processor;

performing a remote mounting with said first client processor, of a security audit directory in a server
processor in said system, containing first temporary bin files associated with said first client processor;

writing first audit records with said first audit daemon in response to said events occurring in said first

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PT02&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 Page 4 of 30

client processor, to said first temporary bin files in said remotely mounted security audit directory in
said server processor;

selectively compressing with said first audit daemon in said first client processor records in said first
temporary bin files and writing resulting first compressed bins with a first type identifier to a permanent
audit trail file in said remotely mounted security audit directory in said server processor;

monitoring the occurrence of a defined set of events effecting data security of a second client processor
in said system, with a second security audit daemon running in said second client processor;

performing a remote mounting with said second client processor, of said security audit directory in said
server processor in said system, containing second temporary bin files associated with said second client
processor;

writing second audit records with said second audit daemon in response to said events occurring in said
second client processor, to said second temporary bin files in said remotely mounted security andit
directory in said server processor; and

selectively compressing with said second audit daemon in said second client processor records in said
second temporary bin files and writing resulting second compressed bins with a second type identifier to
said permanent audit trail file in said remotely mounted security audit directory in said server processor.
4. The method for distributed auditing of claim 3, wherein said first audit daemon in said first client
processor is a UNIX-type process operating under a UNIX-type operating system, said first andit
‘daemon performing the steps of: '

issuing a fork system call to fork a child process for normal operation;

determining the oldest uncompressed bin in said first temporary bin files;

compressing all bins in said first temporary bin file, starting with said oldest uncompressed bin; and
* writing said compressed bins to said permanent audit trail file.

5. The method of claim 4 wherein said audit daemon is a user-lever process in said client processor.

6. The method of claim 4 wherein said audit daemon is a kernel level process in said client processor.

7. The method of claim 4 wherein said permanent audit trail file is recorded on a write-once-read-many
recording medium.

8. The method of claim 4 wherein said first compressed bins are stored in said permanent audit trail file

* . with a header portion and a trailer portion, said header portion including a byte count of the number of

bytes in said associated compressed bin and the identity of said first client processor and said trailer
portion including a byte count of the number of bytes in said associated compressed bin and the identity
of said first client processor, thereby enabling said permanent audit trail file to be searched in either
direction.

9. The method of claim 8 which further comprises the steps of?:

restarting said first audit daemon upon recovery after a failure of said server processor or said first client

http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

T

R 4

~ United States Patent: 5,032,979 Page 5 030

- processor.
10. The method of claim 3, wherein said defined set of events further comprises the steps of:
defining a set of elementary events;

defining an optional list of administrative events, where each administrative event in the list is a set of
elementary events or previously defined administrative events or both;

- defining a first set of events to be audited for a first set of users; and £

defining a second set of events to be audited for a second set of users.

Description

- BACKGROUND OF THE INVENTION
1. Technical Field

The invention disclosed broadly relates to data processing and more particularly relates to providing
security auditing features for a data processing system

2. Background Art

Many data processing applications involve highly confidential information such as in financial
applications, national security applications, and the like, where many user terminals are connected
through terminal controllers to one of a plurality of data processors interconnected in a distributed
processing network. Data files can be stored on storage devices which are commonly accessible by a
plurality of data processors and terminals connected in the network. The diversity of nodes at which

" access can be had to the various data files stored throughout the network presents a significant security
problem, where highly confidential messages and files are transmitted and stored in the system. The
prior art has not provided an effective mechanism to prevent the unauthorized persons or programs from
reading confidential data being transmitted over the distributed processing network and stored in the
commonly accessible storage devices. In prior art data processing systems, communications paths and

_data accessing nodes have been penetrated by unauthorized persons or programs which divert, replicate

or otherwise subvert the security of the confidential information being transmitted and stored in the
network.

For national security applications, the U.S. Government has established a standard by which the security
of data processing systems can be evaluated, that standard having been published in "Trusted Computer
. System Evaluation Criteria," U.S. Department of Defense, December 1985, DoD publication number
,5200.28-STD (referred to herein as DoD Standard). The DoD Standard defines a trusted computer :
system as a system that employs sufficient hardware and software integrity measures to allow its use for
processing simultaneously a range of sensitive or classified information. trusted computing base (TCB)
is defined as the totality of protection mechanisms within a computer system, including hardware,
firmware and software, the combination of which is responsible for enforcing a security policy. A TCB
consists of one or more components that together enforce a unified security policy over a product or
. system. The ability of a TCB to correctly enforce a security policy depends solely on the mechanisms
within the TCB and on the correct input by system administrative personnel of parameters such as a

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

 United States Patent: 5,032,979 Page 6 of 30

user's clearance, related to the security policy. A trusted path is defined by the DoD Standard as a
mechanism by which a person at a terminal can communicate directly with the trusted computing base.
The trusted path mechanism can only be activated by the person or the trusted computing base and
cannot be imitated by untrusted software. Trusted software is defined as the software portion of a trusted
computing base.

As is set forth in the DoD Standard, a secure computer system will control access to information such
that only properly authorized individuals or processes will have access to read, write, create or delete
information. The DoD Standard sets forth six fundamental requirements to control access to information
and to deal with how one can obtain credible assurances that this has been accomplished in a trusted
computer system. The first requirement for a secure computer system is that the system must enforce a
mandatory security policy that can effectively implement access rules for handling sensitive
information. Those rules would include the requirement that no person lacking proper personnel security
clearance can obtain access to classified information and also that only selected users or groups of users
may obtain access to data based for example on a need to know. A second requirement for a secure
computer system is that access control labels must be associated with information which is to be

* maintained secure. A third requirement for a secure computer system is that each access to information
must be authorized based upon who is accessing the information and what class of information they are
authorized to deal with. A fourth requirement for a secure computer system is that audit information
must be selectively kept and protected so that actions which affect security can be traced to the
responsible user. A trusted system must be able to record the occurrences of events which are relevant to
security, in an audit log. The capability to select the audit events to be recorded is necessary in order to
minimize the expense of auditing and to allow efficient analysis. Audit data must be protected from
modification and unauthorized destruction so as to permit detection and later investigation of security
violations. A fifth requirement for a secure computer system is that a system must contain hardware and
software mechanisms that can be independently evaluated to provide sufficient assurance that the system
enforces the first four requirements. A sixth requirement of a secure computer system is that trusted
mechanisms that enforce these basic requirements must be continuously protected against tampering
and/or unauthorized changes.

- The problem of maintaining a secure computer system as defined in the DoD Standard is compounded
for those systems which accommodate multiple users. Some examples of prior art multi-user operating
systems which have not provided an effective mechanism for establishing a secure computer system as
defined in the DoD Standard, include UNIX (UNIX is a trademark of AT&T Bell Laboratories), XENIX
(XENIX is a trademark of Microsoft Corporation) and AIX (AIX is a trademark of the IBM
Corporation). UNIX was developed and is licensed by AT&T as an operating system for a wide range of

. minicomputers and microcomputers. For more information on the UNIX Operating System, the reader is
. referred to "UNIX (TM) System, Users Manual, System V," published by Western Electric Company,

- January 1983. A good overview of the UNIX Operating System is provided by Brian W. Kernighan and

Rob Pike in their book entitled "The UNIX Programming Environment," published by Prentice-Hall

(1984). A more detailed description of the design of the UNIX Operating System is to be found in a

book by Maurice J. Bach, "Design of the UNIX Operating System," published by Prentice-Hall (1986).

AT&T Bell Labs has licensed a number of parties to use the UNIX Operating System, and there are now
several versions available. The most current version from AT&T is Version 5.2. Another version known
as the Berkley version of the UNIX Operating System was developed by the University of California at
Berkley. Microsoft Corporation has a version known under their trademark as XENIX.

With the announcement of the IBM RT PC (RT and RT PC are trademarks of IBM Corporation), (RISC

(reduced instruction set computer) technology personal computer) in 1985, IBM Corporation released a
new operating system called AIX which is compatible at the application interface level with AT&T's

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PT02&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

-

'United States Patent: 5,032,979 Page 7 of 30

UNIX Operating System, Version 5.2, and includes extensions to the UNIX Operating System, Version
5.2. For a further description of the ATX Operating System, the reader is referred to "AIX Operating
System Technical Reference,” published by IBM Corporation, 2nd Edition (September 1986).

The invention disclosed and claimed herein specifically concerns providing a mechanism for auditing
information which must be selectively kept and protected in a secure, distributed data processing system
so that actions affecting that security can be traced to the responsible user. This mechanism isto be a
" part of a multi-user operating system such as UNIX, XENIX or ATX, so that a secure computer system
_can be established. The specific embodiment of the invention disclosed herein is applied to the AIX
Operating System. The reader is directed to the description provided in the copending U.S. Pat. No.
4,918,653 by Abhai Johri, et al. entitled "A Trusted Path Mechanism for an Operating System," assigned
to the IBM Corporation and which is incorporated herein by reference. The description in the Johri, et al.
copending patent application includes the discussion of the operating principles for the AIX Operating
System will assist the reader in understanding the invention disclosed and claimed herein. For further
information on the ATX Operating System, the reader is further referred to the above cited IBM
publication "AEX Operating System Technical Reference."

Since the AIX Operating System and other UNIX-like operating systems make use of a specialized set
of terms, the following definitions are offered for some of those terms.

Process: A sequence of actions required to produce a desired result, such as an activity within the system
begun by entering a command, running a shell program, or being started by another process.

Password: A string of characters that, when entered along with a user identification, allows an operator
to sign on to the system.

Operating System: Software that controls the running of programs. In addition, an operating system may
provide services such as resource allocation, scheduling, input/output control, and data management.

Kemel: In UNIX-like operating systems, the kernel implements the system call interface.

- Init: After the kernel completes the basic process of initialization, it starts a process that is the ancestor
of all other processes in the system, called the init process. The init process is a program that controls
the state in which the system is running, normally either maintenance mode or multi-user mode.

Getty: The init process runs the getty command for each port to the system. Its primary function is to set
the characteristics of the port specified.

.Login: The login program logs the user onto the system, validates the user's password, makes the
appropriate log entries, sets up the processing environment, and runs the command interpreter that is
specified in the password file, usually the shell (SH) program.

Shell (SH): The shell command is a system command interpreter and programming language. It is an
- ordinary user program that reads commands entered at the keyboard and arrange for their execution.

Fork: The fork system call creates a new process called a child process, which is an exact copy of the
calling process (the parent process). The created child process inherits most of the attributes of the
parent process. ‘

Exec: The exec system call execuies a new program in the calling process. Exec does not create a new
program, but it overlays the current program with a new one, which is called the new process image.-

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 Page 8 of 30

The new process image file can be an executable binary file, an executable text file that contains a shell
procedure, or a file which names an executable binary file or a shell procedure which is to be run.

Signal: Signals provide communication to an active process, forcing a single set of events where the
current process environment is saved and a new one is generated. A signal is an event which interrupts
the normal execution of a process and can specify a signal handler subroutine which can be called when
a signal occurs.

Superuser (su): The user who can operate without the restrictions designed to prevent data loss or
damage to the system (user ID 0).

Root: Another name sometimes used for superuser.
Root Directory: The top level of a tree-structured directory system.

Daemon Process: A process begun by the kernel or the root shell that can be stopped only by the
superuser. Daecmon processes generally provide services that must be available at all times such as
sending data to a printer.

Mount: To make a file system accessible.

Terminal: An input/output device containing a keyboard and either a display device or a printer.
- Terminals usually are connected to a computer and allow a person to interact with the computer.

An example of a distributed network within which the invention can find application is described in the
copending U.S. patent application by G. H. Neuman, et al., Ser. No. 14,897, filed Feb. 13, 1987, entitled
"A System and Method for Accessing Remote Files in a Distributed Networking Environment," now
U.S. Pat. No. 4,887,204 which is assigned to the IBM Corporation and which is incorporated herein by
reference.

As described in the copending Neuman, et al. application, in a distributed environment, several data
processing systems are interconnected across a network system. A distributed services program instalted
on the systems in the network allows the processors to access data files distributed across the various
‘nodes of the network without regard to the location of the data file in the network.

To reduce the network traffic overhead when files at other nodes are accessed, and to preserve the file
system semantics, i.e. the file integrity, Neuman, et al. disclose that the accessing of the various files are
managed by file synchronization modes. A file is given a first synchronization mode if a file is open at
only one node for either read or write access. A file is given a second synchronization mode if a file is
opened for read only access at any node. A file is given a third synchronization mode if the file is open
for read access in more than one node, and at least one node has the file open for write access.

If a file is in either the first or second synchronization mode, Neuman, et al. disclose that the client node,
which is the node accessing the file, uses a client cache within its operating system to store the file. All
read and writes are then sent to this cache.

If a file is in the third mode, Neuman, et al. disclose that all read and write requests must go to the server
node where the file resides. The node accessing the file does not use the cache in its operating system to
access the file data during this third mode.

Neuman, et al. disclose that the client cache is managed such that all read and write requests access the

_ http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

e

I L

United States Patent: 5,032,979 Page 9 of 30

client cache in the first and second synchronization modes. In the third synchronization mode, the client
cache is not used. In this way, overall system performance 1s improved without sacrificing file integrity.

"~ OBJECTS OF THE INVENTION
It is therefore an object of the invention to provide an improved secure computer system.

It is another object of the invention to provide an improved secure computer system which complies
with the DoD Standard.

It is yet a further object of the invention to provide an improved secure distributed data processing
system in which audit information can be selectively kept and protected so that actions affecting the
security of the system can be traced to the responsible user.

It is yet a further object of the invention to provide an improved secure, distributed data processing
system using a UNIX-{ype operating system, in which audit information can be selectively kept and
protected so that actions affecting security of the system can be traced to the responsible user

SUMMARY OF THE INVENTION

These and other objects, features and advantages of the invention are accomplished by the distributed
auditing subsystem disclosed herein. The distributed auditing subsystem invention runs in a UNIX-like
operating system environment with a hierarchical file system. The invention includes an audit daemon
which provides an audit trail of accesses to the objects it protects and maintains and protects that audit
trail from modification or unauthorized access or destruction. The audit data generated by the invention
is protected so that read access to it is limited to those who are authorized for audit data. The invention
enables the recording of events which are relevant to the maintenance of the security of the system, such
as the use of identification and authentication mechanisms, the introduction of objects into a user's
address space, the deletion of such objects, actions taken by computer operators and system
administrators and/or system security officers, and other security relevant events. The invention
generates an audit record for each recorded event which includes the date and time of the event, the user,
the type of event, and the success or failure of the event. The invention performs an on-line compression
of the audit trail log file using a UNIX-type daemon process. The audit daemon process has a restartable
feature that enables it to recover after node failures. The invention finds particular application in a
distributed processing system in which files may be variously stored at diverse storage locations in the
network. In such a distributed system, the audit process of the invention can be carried out on a network-
‘wide, distributed basis so that audit files located at diverse storage locations can be concentrated into a
single audit trail log file.

In this manner, a secure computer system which conforms to the DoD Standard is achieved, which can
generate, manipulate and data compress audit information concerning actions affecting the security of
* the distributed data processing system.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, features and advantages of the invention will be more fully appreciated w1th
reference to the accompanying figures.

FIG. 1 is a diagram of a network within which includes two hierarchical file systems.

FIG. 2 is a diagram similar to FIG. 1, showing how directories on systems B and C can be remotely

http://patfi.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 Page 10 of 30

. mounted on system A.
FIG. 3 is a diagram similar to FIG. 1, showing how a client system can access a file on a server system.

FIG. 4 depicts how audit trail information is generated and compressed from a plurality of nodes in the
distributed processing system.

FIG. 5 shows the structure of the real andit trail file.

‘FIG. 6 is a flow diagram of the audit daemon process.

. FIG. 7 is an architectural diagram of the invention.

DESCRIPTION OF THE BEST MODE FOR CARRYING OUT THE INVENTION

An auditing subsystem for a unitary data processor which includes the feature of compressing the audit
trail file has been previously disclosed in a paper by J. Picciotto entitled "The Design of an Effective
‘Auditing Subsystem," Proceedings of the 1987 IEEE Symposium on Security and Privacy, Oakland,
CA, pp. 13-22 (April 1987). Picciotto talks about how to design an auditing subsystem which contains
compression. However, Picciotto fails to deal with how to get an auditing subsystem to operate in a
distributed processing network where there are distributed services.

The concept of distributed services is described in the copending G. H. Neuman, et al. application
referenced above, for example, as a collection of UNIX machines (nodes). Each node has a hierarchical
file system that can be drawn as a tree, as shown in FIG. 1. The root of the tree is called slash and under
each slash is a directory and in each directory we can have either other directories or files. We can think
‘of a UNIX directory as like a file drawer. A UNIX file is like a file in that file drawer. In UNIX, we can
have subdirectories of a directory; that is a path directory can have child directories. FIG. 1 shows a tree
which has its root at the top and branches going down representing hierarchical name space where we
have the root at the top represented by slash and under that we have some subdirectories. In UNIX some
of the typical subdirectories are /bin, /etc, /temp and /usr and sometimes /u and then under a directory

" such as./etc, we have files, for example, /etc/rc or we could have a directory.

In accordance with the invention, we have introduced a new directory /etc/security. Under that, we have
some tables. One of the tables under /etc/security is a file named /ete/security/s.sub.-- cmd, which is the
name of the file that contains the command table for the trusted shell, as described in the copending A.
Johri, et al. application referenced above. Also under the directory name /etc/security, we have
introduced a directory named /etc/security/audit and under this directory we have a file named a.sub.--
event. In accordance with the invention, the event table lists the known events in the system for this

~ particular auditing subsystem. Table 1 gives an example of an event table. There are two types of events:
there are base events and there are administrative events. Base events are events that happen in kemnel or
_ that happen in commands. An example of a base event would be an event in the kernel such as the event
named exec or the event named fork. An example of a base event in a command would be that there are
two events in the command named login. One is login.sub.-- fail and the other is login.sub.-- ok. If we
wanted to define an administrative event in the system that was either login.sub.-- fail or login.sub.-- ok
and we wanted to name this administrative event login, then what we would do is go into the event
table, /etc/security/audit/an.sub.-- event, and edit the table to add a line that says login:login.sub.--
fail,login.sub.-- ok. Then if we are an auditor and we want to turn on the audit event named "login," then
it is already defined in the table. Administrative events are convenient macros that an auditor can use to

_ edit this file or customize this file so that it contains new administrative events. The invention is
especially designed for operation over distributed services (DS), in a distributed processing network.

http://patft.uspto.gov/netacgi/nph-Parser?Sectl=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

| United States Patent: 5,032,979 Page 11 of 30

In order to understand what DS does, as described in the G. H. Neuman, et al. copending application
referenced above, some discussion is given here of hierarchical UNIX file systems. Suppose we have a
network of UNIX systems and on each UNIX system, we have a hierarchical name space with
directories and files; that is, it is a tree with a root at the top represented by "/" and underneath the "/" we
have directories and files, as shown in FIG. 1. On the UNIX system we have some well-known
directories under "/" called bin, etc, temp, usr and some others and then under those we have sorme other
directories or some other files. Furthermore, it is the case that on a traditional UNIX system when we
look at the name space, all of those directories and all of those files are local to that unitary data
processor. None of the files are remote.

Let us assume that we have two UNIX systems. We can call the first one A and the second one B. Each
UNIX system has a hierarchical name space having a tree with the "/" and the various files under it.
What we would like to do is be on one machine A and to access files and directories on the other
machine B. One way to do that, in fact the old way to do that, and that could still exist, is if we are on A
- and if we want to talk to B, what we do is we can log into B with a command called "telnet" or a
command named "rlogin" (r for remote) and what we have actually done is first log into A and now we
~ want to talk to B. So we either do a telnet or rlogin to B and now we are in B's environment (B's
hierarchical name space) and we can perform operations on B. But the one thing we cannot do is move
files back and forth between A and B. That is, we are either on A or on B, but we cannot be on both.

‘What we would like to do is be on one machine and while remaining in the first machine, get access to
the other machine's hierarchical name space, either to its directories or its files. In fact, what we would
like to do on A is have any command that works on A's local files, also work on any remote files on B.
To do this, we need a way of naming a remote file. There are some other things we can do with existing
code. One of the things we can do is if we are on A and we want to copy a file from A to B or from B to
A, then there is a command for doing this and the command is called FTP for file transfer program. On
AIX, it is called XFTP. The way that works is that we are on one machine and we say XFTP and it is
basically like a login. We log into the other machine and now we can copy files back and forth and we
can change the directory to a different directory. We can do a list (LST) to see what is in that directory
and this was acceptable for a while, but it is rather cumbersome.

‘What we would really like to do if we are on A, is to copy a file from B. There is an existing command
named CP for copy and what we do with copy is we say "CP X Y" where X and Y are the names of
files. X is the name of an existing file and Y is the name of a brand new to-be-created file. What we
have done effectively is, we made a copy of X and we have called it Y. Traditionally, X and Y are both

local. They are files on the same machine, but what we would like, is for the software to be oblivious to
whether or not X and Y are local or remote, either both are local or both are remote, a different one
being local. There are more than four combinations, because if both files are remote, they do not have to
be both on machine B. X can be on machine B and Y can be on machine C. When we make a copy of
the file, with CP, we are using the same command that we previously used on the local machine to copy
files that are non-local or remote. The question is, is there a simple way of doing this, or logging into A
and working in A's hierarchical's name space and getting access to the hierarchical name space of other
machines on the network like B and C, such that when we run commands that used to work only locally
on A like copy CP, the system is now oblivious to whether or not the files they deal with are local or
remote on B or C. In particular, we do not have to use XFTP or FTP to move files back and forth
explicitly, we do not have to use telnet or rlogin to actually log into a different system to move files and
do things. Sitting on the local machine, we have LAN transparent access to remote files. LAN is a local
area network. Transparent means that we are oblivious or the code is oblivious to whether or not the

files are local or remote. Access means we can read and write these files.

http://patft.uspto.gov/netacgi/mph-Parser?Sect]1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 Page 12 0f 30

This is in effect what DS offers, as described in the Neuman, et al. application. On a local UNIX system,
what happens is that we have a hard disk and we define in UNIX what is called file systems. A file
system corresponds to the space of an entire hard disk, or it corresponds to part of the space on a hard
disk. For example if we have 170 megabyte hard disk, like in an RT, we can divide one UNIX file
system for that or we could chop that into two UNIX file systems, or three or four. There are some limits
to the number of file systems we can have on a hard disk. Let us assume for the time being that we
might have two file systems on 170 megabyte hard disk. What happens in UNIX is that "root" is not
only a directory, it turns out also to be a file system. There is a certain amount of space on disk and it
also contains the subdirectories, the directories and files that are in that file system. If we have two file
systems in UNIX, we have one hierarchical name space. What we do is that we want to represent all of - £
the file systems in one hierarchical name space and typically we define a directory in the name space :
and that will be a "mount point" a. We are going to "mount" another file system on top of that mount

point a. In this particular example, mount point a happens to be a subdirectory of the root. In FIG. 1 the

new file system on B is shown as a triangle with a dot b at the top. DS enables the mount point a on

system A and the point b on the new file of system B to logically coincide. There are actually two

- directories under A. There is the directory in the root file system "/" of A and there is the subdirectory a

- at the mount point. The directory at b in system B that is the root of the mounted file system that is the

file we are going to mount on top of the mount point a. Once we have done the mount operation, that is

we have mounted a file system onto an existing directory, we have basically grown the hierarchical

name space in system A to include more files and more directories. When we progress down the path in

system A from "/" to mount point "a" and into the mounted directory at "b", by doing a change directory

command CD, we enter into an expanded area.

‘The reason why we bother chopping things into file systems on UNIX, is file rolling. We do not want to
put all data on one disk in one file system. We want to chop things up into smaller file systems such that
if we have a lot of activity in one, but do not have a lot of activity in another, then the one for which we
do not have a lot of activity, we do not have to back it up very often. The one that we have a lot of
activity in, we want to back up quite a bit. Rather than always backing up everything, we partition the
disk space in the file system such that it is easier to make backups of some files, or if we have a failure
in part of the disk, we do not lose everything, we just lose that file system. When we back up storage on
UNIX, we back it up on a profile system basis. What we have here is one UNIX machine, we have one
or more disks on it, each disk contains one or more UNIX file systems. If the UNIX system has more
than one disk, then each of the disks has one or more file systems and what we do is we have a
distinguished file system called the root file system and the other file systems are sub-trees that we
mount onto various directories of this root file system. This is a way of extending a Incrarchlcal name
space for a local machine.

Much of UNIX depends on having this single hierarchical name space and for most of the commands
used when we edit a file or when we copy a file, we specify a path name and the path name is either an
absolute path name, or a relative path name. An absolute path name begins with "/" and it starts at the
root of this hierarchical free. In a relative path name, there is a command for changing a directory, like
opening a file drawer. When we do a CD to change directory to go into a different place, then we can
specify path names relative to that directory. This completes the background discussion of hierarchical
UNIX file systems necessary to introduce the principles of distributed services.

LRI

In FIG. 1, let us name the systems A and B and let us name the directory on A that we are interested in
a" and the directory on B that we are interested in as "b." With distributed services as described by

Neuman, et al. in their referenced copending application, on A, we can mount the directory and

everything below it from machine "b" onto the directory "a" on machine A. Another way of doing this,

- isif we go to machine B, and we look at the directory named "b," and we view it as having a triangle

under "b," and let us view that triangle not as a file system, but view that triangle as all of the directories

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 ‘ Page 13 of 30

and files that are undemeath "b." What we are effectively doing, is we are taking a scissors and we are
cutting above "b" and we are moving it over and putting it right on top of "a." Another way of doing
this, is to draw a dotted line from "a" to "b" and to put an arrowhead on the dotted line near "b." This
‘means that if we are on machine A, and we want to access a file on machine B and we progress down
the path in machine A that has the remote directory mounted onto "a," then whenever we progress to

- "a," DS automatically goes over the dotted line of FIG. 1 and accesses files and directories under "b."
This is "mounting” a remote directory onto a local directory. What DS allows, is mounting a remote
directory onto a local directory or to mount a remote file onto a local file. Parenthetically, DS also
allows mounting any local directory onto another local directory or any local file onto any other local

- - file.

If we have done the remote mount, and we use the CP copy command to copy a local file to, for
example /temp/x (a temporary file named x in the temporary directory) and we want to copy that to /b/x,
then after we have done the remote mount, we are copying a local file to a remote file and we have done
50 because we have already performed the remote mount. That is what distributed services is all about,
remote mounts. Or another way of referring to them is virtnal mounts. Virtual means that we are not
really doing the mount, it is as though we were doing the mount. In that case, we are not really mounting
a file system, we are really mounting a directory or a file which can be remote.

Let us say that we are on machine A in FIG. 2 and we want to access all the files at machine B. We have
three machines A, B and C and on A, normally we can only access the A files and on B, we can only
access the B files, and similarly, when we are on C, we can only access the C files. Suppose we are on A
and we want to access all B files. One way to do that is to create a subdirectory of the root of A and call
it B and therefore have a directory on machine A called B, that is the name of the directory of the other:
machine. What we do is mount the root of B onto A's directory /B. In FIG. 2 mounting /B onto A is
represented by a dash line from /B, over to the root of B, with an arrowhead next to the root of B. The
triangle at /B is the hierarchical name space of B. The result of remote mount "rmount" or "vmount," let
us call it, is if we are on A, and we want to mention any file name over on B, we just prefix it with /B.
Similarly, if we are on A, and we want to mention any file name on system C, then we create a
subdirectory of the root of A called C, and then do a "vmount" (virtual mount) of C's root onto A's
directory named /C. This is shown in FIG. 2 by a dash line from /C over to the root of C. If we are on
any machine, for example A, we can specify a name of any file in any other machine with the remote
‘mount feature of DS. This is one way we can use the DS mechanism. Once we have done that, we now
have a way to access all files. It tums out this is one way to use DS, but there are other useful features.

On UNIX, there is an on-line manual that is typically in a file named /usr/man and under that, there is
. normally a big directory of things. If we want to bring up a manual page for any particular command on
the screen, we use a command name "man" for manual and we write the name of that command. For
example, if the command that we are interested in is the command named CP for copy, and we want to
see the manual page on the machine for CP, then we write "man CP" and up on the screen is printed a
- picture of the manual page for CP. The on-line manual happens to be stored in /usr/man and it might be
five to 10 megabytes of material and we might have a local area network where we have some machines
. that have small disks and other machines that have many disks. The machine that has many disks, we
might call a file server. The other machines may not have as much disk space and we would like to store
the on-line manual in only one place, namely on the file server and not on all of the machines. There is
10 need to store the on-line manual in every single system. We only need to store it in one place. On our
file server machine, we put the on-line manual under /usr/man. The machine which stores the on-line
manual is called the server and the machine that does not have an on-line manual is called a client. As
shown in FIG. 3, on the client machine, there is a hierarchical name space that starts with a root which is
-a slash and under that, there is a subdirectory called "usr" and under "usr" there is a subdirectory called
"man" and under "man" there is nothing. "Man" is a directory on the client machine, but there is nothing

hitp://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 Page 14 of 30

under it. The way we get access to the real manual is we do a "vmount” or "rmount" of the directory
containing the manual from the server over to the client. The command "vmount” will specify the two
path names. FIG. 3 shows that on the client, a dash line is drawn from the stub directory /usr/man. On
the server machine we have the same path, /usr/man, but we further have the manual (represented as a
triangle) under /usr/man. The "vmount" is represented by a dash line from the client "man" over to the
server "man." Suppose we are on the client machine and we run the command whose name also happens
to be "man" and we say "man CP;" what happens is since the actual manual pages are remote and not
local, DS has the ability to go over and access those files from the server and get them as though they
were local. What we have is transparent access to remote files.

The above discussion shows two different ways of using DS. Namely the user can have a file named to

. any file in any hierarchical name space on any machine in his LAN. Alternately, the user can customize
his name space so that files he does not have space for, can be remotely stored and just a pointer will
remotely access it. This is particularly useful for something like an on-line manual. It is also useful if we
are doing software development or if we have many people sharing a common data base such asin a
local area network and each person does not have to store everything on the same local machine. We
have transparent access to it as though it were local. This completes the brief description of distributed
services. The following description now focuses on the invention.

The invention is performing auditing and audit trail compression on a network-wide basis which is
compatible with DS. In the DS environment, the audit trail can be local or remote. It can operate in a
‘LAN where we have many machines, and there can be more than one machine appending audit trail
" records to the same audit trail file. There may be many machines adding audit trail records to the same
file. In such an auditing system, the audit trail records tend to accumulate very quickly and fill up audit
disk space. If we have just a small work station with not much disk space, although we can define the
audit trail file there, it will fill up after a while and we have to manage it on a daily or a weekly basis.
What we would prefer to do, is to have one machine in the network that we may designate as an audit
trail server. The server machine will have a large disk space on it. For example, high capacity video
disks can be used on the server, which can hold 500 megabytes. We would designate one of these as an
audit trail server and have all of the client nodes of the network feed audit trail data to the server. One of
_ the properties of a video disk is that it is a write-once media. That is, we want to be able to write once
-onto the disk, but we cannot rewrite. We keep appending new data to the file and that is consistent with
. its wse for example in auditing as an audit trail file.

Some of the invention's features include file location transparency. Any file names or directory names
that are to be audited can either be local or remote. Furthermore, the invention can accommodate many
nodes appending audit records to one audit trail file. Furthermore, when doing compression in an
auditing scheme, the invention compresses the records before they are put onto the audit trail file. Rather
than compressing one record at a time, the invention fills up small record bins. Each bin has a certain
maximum number of bytes, for example 20,000 bytes in the disclosed embodiment. When we fill up a
bin, we do the compression on the whole bin and then we append the compressed bin to the audit trail
file. What the audit trail consists of in the invention is a sequence of compressed bins. The compression

- technique that we are using is a command named PACK that is available on the UNIX Operating
System. The auditing subsystem invention satisfies the Audit Requirement for classes C2 to Al in the
DoD Orange Book. The invention performs on-line compression of the audit trail log file using a single
audit daemon process per system.

The following is an example of how the auditing invention works and the example has three nodes as

shown in FIG. 4. A node is a machine and the nodes are named A, B and C. They are shown from left to
-right in FIG. 4. Let us assume that associated with each node named A, B and C is a node ID (a nid). A
nid for A is a number, in this example, let us make it 222. The nid for B in this example is 333 and the

http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 Page 15 of 30

nid for C is 444. For the IBM RT PC, for example the nids are 32-bit integers. FIG. 4 shows the
hierarchical name space of the file system name space on A. We are only interested in four files on A,
but they happen to have long path names. The first file that we are interested in A is actually the name of
A's event table. A's event table happens to be /etc/security/audit/a.sub.-- event. Each machine has its
own event table, because on that machine we would want to be able to specify per-machine events if
desired. Another possibility is that we could have all machines use the same set of events and what we
would do is designate one machine as the machine that contains either the audit server or file server
which stores the real event table and just vimount that event table onto each client machine.

“There is another set of path names on a local machine which we may not want to have accessed by other
machines. These files are local only. That is, when we refer to these files, we want to make sure that
either they are stored on a local machine or if they are stored remotely that this is A's copy of these files.
The user at machine A may not want any other machine (B or C) to be able to get to certain local files.
One place to put them is in a directory on A called /local. The word "local" here means that there is a
node-specific copy of these files for A. Similarly, on machine B, the user may have a /local directory
and the files under there are to be node.specific to B.

sy

Under A/local, we have /local/etc/security/audit. Audit here is a directory and under /audit we have three &
files. A.sub.-- state is the first file, and it just contains the set of events that are turned on. The second :
file under this audit is A.sub.-- trail and it contains the name of the current audit trail and it also contains

‘the name of the timestamp when auditing was turned on for the other trail. The third file is A.sub.--

trail. past and that contains the history of audit trail files for node A and the corresponding start and stop

timestamps. There can also be be some other information in there.

Similarly on node B, we have the same kind of directory structure, It has an event table
under /etc/security/audit/a.sub.-- event and it has the three files. The node-specific files
under /local/etc/security/event/audit. The state file, the trail file and the trail.past file.

In this example we turn on auditing at machines A and B and place the audit trail file on machine C. For
* this example, there are no audit records from machine C, but if desired, we could turn on auditing on
machine C and specify the same audit trail file. Let us assume that we have a hierarchical name space on
- C where slash is the root and under that we have a directory named audit, and under that we are going to

- have a file named X and that file named X is going to be the name of the audit trail file. What we would
do is turn on auditing on A and specify that the audit trail file is going to be the file on C named /audit/X
and similarly when we turn on anditing on machine B, we specify that the audit trail file is going to be
the file on machine C named /audit/X and if we turned on auditing on C, we could specify that the audit
trail file is /audit/X. The way we do this is as follows.

On machine A, we define a subdirectory of the root named audit. Similarly, on B we define a
- subdirectory of the root named audit. What we do is vmount the directory on machine C named /audit
“onto each of those local directory stubs on A and B. In FIG. 4 on A, we have /audit; there is a dash line
from that audit on A over to the slash audit on C. Similarly on machine B, if we do a vmount of C/audit
o the B/audit there is a dash line from B over to C with the arrowhead on the audit under C. What is 7
happening is that on machine A, /audit is a remote directory. In the invention, the audit trail can be either
local or remote. The audit frail in this example is /audit/X. It does not matter if that file is remote or if
the directory containing that file is remote.

The invention compresses the audit trail records. We write the audit trail records into bins. When the
bins fill up or get close to full, we move on to another bin and we start filling it next. We have to have a
name for these bins. These bins are files in the hierarchical name space, so we have to select a location

* for them. Another thing we have to do is that on each machine A, B and C, there is another process

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 Page 16 of 30

running called the audit daemon and it is the audit daemon that actually compresses the bins and
appends the compressed bins to the audit trail file. The audit trail file is shown in FIG. 5 as a long
column divided into frames by horizontal lines, the line at the top indicating that it is the byte 0 file.
Each of these frames will contain a compressed bin. The audit daemon does not compress one record at
a time, but it takes a whole bin of records, compresses the bin and appends the compressed bin of audit
records to this audit trail file. Each frame in the audit trail file includes in addition to the compressed
bin, a small header and a small trailer. The small header has a uniform format and the small trailer has
the same size and another uniform format. The bin header tells how many bytes are in the compressed
bin and the nid where that bin came from.

The headers on the frames are in the clear (not compressed) so that if we want to scan forward through
the andit trail, Jooking for records from a particular node or nid, we just look at the current header at the
beginning of the file, and either its a compressed bin of records from the node that we are interested in
or it is not. If it is, then we do whatever we need to do in reading its contents. If it is not the node of
interest, then we know exactly how many bytes to skip to go to the next compressed bin and the next
compressed bin will have a similar header.

- The reason why we have a trailer on each of these bins is because it is useful to read the audit file
backwards. The reason why we want to read this file backwards is during recovery time. If we have been
auditing and one of the machines fails, or the machine containing the audit trail fails, then when we
eventually reboot the machine or we get if running again, the daemons that are doing the compression
have to determine what state they are in and resume operation. In order to do that, they have to
determine what bin they finished with, and what bin to pick up next. Part of that information they

~ determine from reading the audit trail file backwards.

In FIG. 4, we have machine A with hierarchical name space under it to the files that we are interested in.
The same for B, the same for C. Under C, we have something slightly different. A and B are similar but
C is different. Remember that the nid for A was 222 and the nid for B was 333. Here is what we do on
machine C. If we specify that the audit trail is /audit/X, then X is going to be the real audit trail file and
it is the file that is eventually going to contain the sequence of compressed bins. Each bin can potentially
be from a different node and when we append these bins onto the audit trail file, we can do so in an

_atomic way on UNIX. That is, when we do the write, if we have two processes that one or two audit
daemons will want to write at the same time, there is no conflict because on UNIX these writes will be
serialized. So one bin will come in first and the other will come in next.

But the problem remains as to what to name the bins so that if we have two or more machines doing
auditing operations, they do not write on each other's bin files. In accordance with the invention, we

~ segregate the bin files on 2 per node basis and one place to segregate them is under /audit. Instead of just
creating simple files under /audit, we create a directory of temporary bin files under /audit, we give it as
a name, for example, the nid corresponding to the node that is creating these bin files, for example node
A, and we place the bin files under the subdirectory of /audit, corresponding to machine A. On machine
C, we have a directory called /audit/222 or /audit/.222 because there is less of a probability of a file

- name with a dot being a name conflict. Under /audit/.222, we have the temporary bin files for machine
A. Similarly, for machine B, which has nid 333 on machine C, we have a directory named /audit/.333
and under there we put the temporary bin files for machine B. We can name the bin files with a common
prefix and a suffix that goes serially counts through a sequence of numbers, for example 0 up to 999. In
the present example, we use the trail file name, for example X, as a prefix of a temporary bin file name.
As the suffix of a temporary bin file name we have dot followed by three decimal digits and the decimal
digits will run from 000 to 999 and then they will wrap back to 000. There is also a small control file in
each directory, in this example, x.ctl, for example /audit/.222/x.ctl (it is a control file for this set of bins).

_ The control file gives information about what is the next bin to use. In general, there is no problem about

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

.ongmT

United States Patent: 5,032,979 Page 17 of 30

wrapping bin file numbers from 999 back to 000 because we are assuming that audit daemon is on and

“that when an audit daemon compresses a bin, an audit daemon does not generally compress a bin until it
is full and the system has gone into another bin. If the audit daemon has compressed a temporary bin
file, the audit daemon writes the compressed bin to the real audit trail file named /audit/X and it then
erases that bin from /audit/.222/X.123, for example. It goes through the bins serially. If there is no work
for the audit daemon to do, the audit daemon goes to sleep. When the audit dacmon compresses a bin, it
appends the compressed bin to the real audit trail file, in this example, /audit/X. In this manner, while
events are occurring which require auditing by the audit daemon, the uncompressed bins can be
ternporarily stored under /andit/.222, for example. Then later when no events are occurring, the audit
daemon can compress the temporary bin files and write them to the real audit trail file /audit/X.

‘While bins are being stored on machine C, the audit daemon that is working on machine A's bins is
really machine A's daemon. Machine A's daemon knows about a particular set of bins and it does not
care if the bins are local or remote, it just does its work. In this example we have A's daemon working
on bins stored under C's machine /audit/.222 and we have B's daemon working on bins that are stored on
C's machine under /audit/.333. If we had auditing turned on for machine C, its daemon would be
working out of bins under a subdirectory on machine C named /audit/.444. These daemons are working
‘out of different places. Whenever a daemon wants to append a compressed bin onto the real audit trail
file, it calls a system call in UNIX named "write" and it writes it in one atomic write. If there are two
daemons that want to write to the real andit trail file at the same time, they are serialized. This concludes
the example of a remote audit trail file to which two or maybe three systems are writing, in accordance
with the invention.

FIG. 7 is an architectural diagram of the invention, showing the network 1 interconnecting the client
processor A, the client processor B and the server processor C. As is see from FIG. 7, the client
processor A has application programs 2A running under the operating system 4A which is, for example,
a UNIX-like operating system. The distributed services 6A running in client processor A provide the
system and method for accessing remote files in a distributed networking environment, as is described
by Neuman, et al. in their above referenced copending patent application. The audit daemon 8A in the
client processor A uses the events defined in the event table 10A to identify those operations being
carried out in the client processor A which must be audited. The audit dacmon 8A develops audit
records which are stored in the temporary bin files 12A of the server processor C, through the agency of

" the distributed services 6A, as has been described. Similarly, the applications 2B, operating system 4B,

distributed services 6B in the client processor B operate in a similar manner to the corresponding
sections of the client processor A. The audit daemon 8B in the client processor B uses the events defined
in the event table 10B to audit operations being carried on in the client processor B. Audit records
developed by the audit daemon 8B are stored in the temporary bin files 12B of the server processor C,
through the agency of the distributed services 6B, as previously described. The applications 2C,
operating system 4C and distributed services 6C in the server processor C operate in a manner similar to
that for the client processor A. The audit daemon 8C uses the events defined in the event table 10C to
audit operations being carried out in the server processor C. The audit daemon 8C will store the audit
records developed for the operations in the server processor C, in the temporary bin files 12C of the

" server processor C. As has been previously described, the audit daemon 8A and the client processor A,

will periodically examine the contents of the temporary bin files 12A in the server processor C, 1o
determine if there are any bins of audit records which have not been compressed. The audit daemon 8A
will then go through its compression operation, selecting bins in the temporary bin files 12A which have
not been compressed, compressing the contents of those bins, and then appending the compressed bins
with the appropriate header and trailer, to the permanent or real audit trail file 14 in the server processor
C, through the agency of the distributed services 6A, as has been previously described. In a similar
manner, the audit daemon 8B in the client processor B will periodically examine the contents of the
temporary bin files 12B in the server processor C, to determine whether there are bins of audit records

http://patft.uspto.govinetacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 Page 18 0f 30

from the client processor B which have not been compressed. Upon finding uncompressed bins in the
temporary bin files 12B, the audit daemon 8B, through the agency of the distributed services 6B, will
carry out its compression operation on selected bins in the temporary bin files 12B, and will then append
the compressed bins along with the appropriate header and trailer portions, to the permanent or real audit
trail file 14 in the server processor C. The audit daemon 8B does this through the agency of the
distributed services 6B, as has been previously described. The audit daemon 8C, in a similar manner,
can periodically review the contents of the temporary bin files 12C, to determine if there are
uncompressed bins which should be compressed and then added to the permanent audit frail file 14 with
the appropriate header and trailer portion.

DETAILED DESCRIPTION OF THE AIX EMBODIMENT OF THE INVENTION

“The UNIX (UNIX is a trademark of AT&T Bell Laboratories) and AIX (AIX is a trademark of IBM
Corporation) and UNIX-like operating systems need an auditing subsystem that satisfies the Audit
Requirement for classes C2 to A1 of the DoD Trusted Computer.System Evaluation Criteria (December,
1985), also called the "Orange Book." This auditing subsystem satisfies all the following design
requirements and properties:

_(a) Software environment requirements: runs in a UNIX (or AIX or UNIX-like) operating system

* environment with a hierarchical file system and with an atomic write operation like the write {) system
call, and runs in an operating system environment with local/remote file/directory location transparency,
such as‘a "virtual mount" or "remote mount" based mechanism (e.g.,) IBM RT PC AIX Distributed
Services, also known as DS);

(b) Security requirement: provides an anditing framework to help satisfy the Audit Requirement for
classes C2 to Al of the Orange Book;

(c) Invention properties: performs on-line compression of the audit trail log file using a single audit
daemon process per system, has a restartable audit daemon that recovers after node failures, for DS or a
_similar mechanism, has file/directory location transparency, for DS or a similar mechanism, lets many
nodes append audit records to one audit trail log file, and captures the login user ID, can prevent login as
a pseudo-user like root, but can allow su ("substitute user") to a pseudo-user like root.

(d) Additional properties: lets the audit trail log file be on write-once media, and has no well-known file
"names in the operating system kernel part of the auditing subsystem, and cuts exactly one audit trail
record per system call if the corresponding base event is enabled and exercised.

- DESCRIPTION OF INVENTION

We explain this invention in the context of an implementation of it in the AIX Operating System.
Although we explain the invention in the context of the AIX Operating System, but it also applies to any
UNIX or UNIX-like operating

 ARCHITECTURE OF THE AUDITING SUBSYSTEM

This section describes the architecture of the auditing subsystem. By "architecture” we mean the user
and programmer interface to the outermost (i.e., AIX system) module. To define the architecture, we list
and review the auditing subsystem "manual pages” from the IBM RT PC AIX Operating System
Commands Reference, 2nd Edition 1986 and the IBM RT PC AIX Operating System Technical
Reference, 1st Edition 1985, and we list the AIX auditing subsystem path names.

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 Page 19 of 30

OVERVIEW

The following lists the AIX "manual page" names that define the architecture of the AIX auditing
subsystem.

commands:

audit: controls auditing subsystem

- auditd: perform compression on audit data i
auditpr: displays a "filtered" aundit trail file

system calls:

- audit: enables and disables auditing :
auditevents: gets and sets the audit events of the system

éudiﬂog: appends an audit record to the audit trail file

auditproc: gets and sets the audit state of a process

file formats:

a.sub.-- event: associates an administrative event with base events

a.sub.-- state: records general and special auditing events

audit: describes the audit trail file format

For convenient reference, the following lists path names in the AIX auditing subsystem.

audit directories:
/etc/security/audit for system audit tables
{(not audit trail file itself)

/local for node-specific files
audit tables:
/ete/security/audit/a.sub.-- event

Audit Event Table
/local/etc/security/audit/a.sub.-- state
Audit State
/local/etc/security/audit/a.sub.-- trail %
Audit Trail.Name =
/local/etc/security/audit/a.gub.-- trail.past .
Audit Trail Name History

audit header files:
/usr/include/sys/audit.h
definitions for auditing
system calls
/usr/include/sys/auditd.h
definitions for audit
daemon and kernel : i

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 Page 20 of 30

Jusr/include/sys/anditk.h
definitions for auditing
in the kernel
/usr/include/sys/auditlog.h
definitions for audit
log record
-audit commands:

/usr/bin/audit controls auditing
subsystem

/usr/bin/auvditpr formats audit trail file

audit daemon:

/etc/auditd Audit Daemon

We now describe the auditing subsystem in terms from the above lists.

AUDIT COMMAND AND AUDIT TABLES

The audit command controls the auditing subsystem. It can be invoked only by the superuser. It can:
enable auditing and specify the audit trail file, switch the audit trail file when auditing is already
enabled, disable the entire auditing subsystem, specify what (administrative or base) events are audited
for the general class and the special class of users, distinguish users or groups as in the general class or
in the special class, query the status of the auditing subsystem, query the history of audit trail files, and
clear the set of general events or special events or special users or special groups.

The purpose of specifying audit events and distinguishing two classes of users is to help prefilter (i.e.,
selective collection) the audit trail log file records, rather than flooding the audit trail log file with
unnecessary records that must be postfiltered (i.e., selective reduction).

The audit command uses the following files:

/etc/security/audit/a.sub.-- event

{etc/security/s.sub.-- user

/ete/security/s.sub.-- group

' flocal/etc/security/a.sub.-- state

/local/etc/security/a.sub.-- trail

_/local/etc/security/a.sub.-- trail.past

Each entry in the event table /etc/security/audit/a.sub.-- event associates an administrative event with a
set of base events. An administrative event (e.g., "system.sub.-- call" or "tcpip.sub.-- event" or
"object.sub.-- create"), a convenient macro for an auditor, is defined by a set of "atomic" base events
and/or previously defined administrative events. A base event is either a system call name (e.g., "fork")
or an event in a trusted process (e.g., "login.sub.-- ok™) or a non-system-call event in the kernel (e.g.,

" dSI'pC")-

' Bach entry in the user table /etc/security/s.sub.-- user (and in the group table /etc/security/s.sub.— group)

http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

LUTRSTTEE

United States Patent: 5,032,979 Page 21 of 30

contains a field that is 1 to identify special auditing and 0 to identify general anditing.

. The audit state file /local/etc/security/audit/a.sub.-- state holds the current sets of general and special
events for an event status query.

In the invention, directory /local contains node-specific files. This directory, contrary to its name, can be
remote ("vmounted” or "rmounted"). However, whether local or remote, its files must be node-specific.
The name "local” means that you can think of these files as either local or logically local, In this design,
directories /ete/security/audit or etc/security, or the files that they contain, can be local or remote.

' The audit trail name file /local/etc/security/audit/a.sub.-- trail and the audit trail name history
file /local/etc/security/audit/a.sub.-- trail.past contain audit trail file names and (start and stop)
timestamps that are used by the status query and for recovery by the audit daesmon.,

To hold the audit trail files, we recommend that an entire file system be created and dedicated to hold
trails, say /audit. If the audit trail file is remote, then with a mechanism like DS an audit server directory
for the trail can be "vmounted" onto a local /audit stub directory.

AUDIT DAEMON AND AUDIT TRAIL FILE FORMAT

The audit daemon /etc/auditd is a background process (usually started from the /etc/rc command file)
that packs (or compresses) bins of kemel-generated audit records and writes the packed bins to the audit
trail file.

In the invention, the kemel does not write audit records directly into the audit trail file. Instead, the
writing of audit records is buffered; the kernel writes audit records into a sequence of bins, each a user
level file with a maximum size in the current design, and the audit daemon reads bin files, one at a time,
and appends compressed bins to the audit trail file.

An audit trail file consists of a sequence of three-part (head, body, tail) frames, where the body consists
of a possibly packed bin (i.e., sequence of andit records for a particular node), and where the head and
- tail have the following structure:

struct x
ushort id; /* head=0.times.f0f0, tail=0.times.0f0f =*/
ushort bin; /* bin # */
ushort before;
/* unpacked length of body */
ushort after;
/* packed (current) length of body */
nid.sub.-- t nid;
/* node identifier */
1;

- Other than the id field, the head and tail of a frame are identical, which allows the audit trail to be
scanned forwards or backwards. When (after==before}, then the body is unpacked; otherwise
(after<before) and the body is packed. For packing and unpacking, we use a Hoffman encoding
algorithm like that used in command pack.

http://patft.uspto.gov/netacgi/mph-Parser?Sect 1 =PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

e SRR

United States Patent: 5,032,979 Page 22 of 30

In the body, each unpacked audit record itself has a head and an optional tail. .
File /ust/include/sys/anditlog.h defines the head of an audit trail record with a C structure. i

LOGIN USER ID

A significant feature of the invention is that it satisfies the per individual accountability property of the
Audit Requirement in the Orange Book, say for class C2. For a C2 AIX, so configurable at system
installation time, we disallow login as root or any other pseudo-user (e.g., bin), however, we do allow su
(the "substitute user" command) to a pseudo-user like root. Also, the design remembers the login user ID
of a process in the kernel with new component u.sub.-- luid in the "u" block, and posts it on each audit
record along with the other user IDs (i.e., real and effective) so that, with command aunditpr, we can
postselect audit trail records based on login user ID.

The login user ID is set at login time and it cannot be changed during a login session. It is not set
directly by a system call. Instead, it is set as a side effect of system call setuid only when there is a call .
‘to setuid away from root for the first time during a login session, as is done by the login process.

- A pseudo-user, or false user, is not a real person but a role; typically a group of real users know the 2
password of a pseudo-user. The user name root is a pseudo-user. ’

On the AIX the user table /etc/security/s.sub.-- user contains a "login" field that is 1 to allow login and 0
to disallow login on a per user basis. In a C2 AIX system, the "login" field value of each pseudo-user,
including root, is O (for no login allowed). An administrator can set the "login" field with command
adduser, since the administrator should be able to differentiate a real user from a pseudo-user.

Invalidating a user with the adduser command is not the same as disallowing that user to login. When a
user has been invalidated, the password check fails for that user because the encrypted password has
been replaced with a * and there is an explicit check for a *. As an invalidated user, you cannot login,
and in addition you cannot su directly to an invalidated user. If the "login" field is O for a user, then that
user cannot login, but you can su directly to that user. Of course, a system administrator with the root
password can su to root then su to any user, inclnding an invalidated one.

For example, as a system administrator, one would login as, for example, user matthew, then su to root
“to perform various administrative tasks on a C2 AIX system. The auditing subsystem knows the login
user ID in addition to the real and effective user IDs. In other words, to the auditing system one is either
matthew as root, or simply matthew.

* AUDIT PRINT COMMAND

The audit print command aunditpr reads the audit trail defined by its given path argument and prints a
report in "attribute file format" (see the ATX manual page for the attributes file format in the IBM RT
PC AIX Operating System Technical Reference, Chapter 4) on the standard output. It can be invoked
- only by the superuser.

When invoked with no options, command auditpr prints all audit records from audit trail file path. When
invoked with options, command auditpr uses the options as a filter to print only the option-selected audit
records from audit trail file path. Multiple different options (e.g., -u john -g system) are AND'ed
together in the filter. For each option other than -A or -B, either one name or several comma-separated
names (with no imbedded white space) can be used (e.g., -g system, bin,staff).

If any auditpr command option is used, then the resulting attribute file has a default stanza that identifies

http://patft.uspto.gov/netacgi/nph-Parser?Sectl=PT02&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 Page 23 of 30

the options, and those name-value pairs with a single value are factored out of the records that follow.
Options with multiple values appear as commented-out comma-separated values in the default stanza.
Record stanza names begin with an " (for record), followed by the relative record number from the
path parameter, starting from 1. A comment line containing "***" separates an audit record head from
an audit record tail.

If the auditing subsystem is enabled, then file /local/etc/security/audit/a.sub.-- trail contains the name
and enable time of the current audit trail file. File /local/etc/ security/audit/a.sub.-- trail.past contains the
history of audit trail file names and enable/disable times.

g

AUDIT SYSTEM CALLS

This auditing subsystem design has four system calls; for each of these, the effective user ID of the

-calling process must be the superuser to use the auditing system call. (As an aside, the collective

functionality of these system calls is more important than the exact number of system calls or any
argument order.)

System call audit can enable (turn on) the auditing subsystem and specify an audit trail file, switch the
audit trail file when auditing is already enabled, disable (turn off) the auditing subsystem, clear all the
audit events, and query the on/off status of the auditing subsystem.

System call anditevents gets and sets the events that the system audits. While AIX differentiates two
classes of events, and associates an event set with each class, general and special, this differentiation is
of minor significance to this invention.

- System call anditlog appends the "user level base event” audit record fo the end of the audit trail file.

System call auditproc gets and sets the audit state of a process. System call auditproc can suspend
(temporarily disable), with one exception, and then resume (enable) auditing for the current process.
Suspending the auditing of this process disables standard auditing but allows the process to call the
.auditlog system call to append records to the audit trail. The suspend/resume state can be queried too. In
addition, system call auditproc can set the general/special class status of a process, and query that status. -
The general/special commands of system call auditproc are intended to be invoked at login time. The
general/special auditing status should, but need not, be invariant across a login session.

As should be apparent now, command audit is convenient "window dressing"” that invokes system calls
audit and;auditevents and that use various auditing files.

. HOW A TRUSTED PROCESS CAN USE AUDIT SYSTEM CALLS

A trusted process like login can use system calls auditproc and auditlog as follows. It can call auditproc
. to turn off auditing for the process, then it can call auditlog a few times in selective places to cut only a

. small number of audit records. Using auditproc and auditlog like this can help prefilter the audit trail by
posting more descriptive records and avoid flooding the trail with unnecessary records.

R

KERNEL PART OF THE AUDITING SUBSYSTEM
This section describes several important properties of the kernel part of the auditing subsystem.

One Audit Record Per Local System Call. When the auditor selects a system call event, and when that
local system call is invoked, this design appends exactly one audit trail record to the audit trail log file.

http://patft.uspto.gov/netacgi/nph-Parser?SectI=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 Page 24 of 30

To accomplish this, the kernel caches information in the "u" block of the process. In contrast, the
designs in Secure Xenix (Gligor, et al., "Design and Tmplementation of Secure Xenix," IEEE
Transactions on Software Engineering, Vol. SE-13, No. 2, pp. 208-221 (February 1987) and Picciotto's
paper (J. Picciotto, "The Design of an Effective Auditing Subsystem," Proceedings of the 1987 IEEE
Symposium on Security and Privacy, Oakland, Calif., pp. 13-22 (April 1987) may cut multiple andit
records per system call.

Auditing the "Audit" Event. Care is taken to cut an audit record for the "audit on" and "audit off" events
when auditing is enabled/disabled for system call audit. This item, while obvious to the reader, requires
. a little extra scrutiny.

When the Kemel Cannot Write an Audit Record. In this design, when the kernel cannot successfully
write a record to the audit trail file, then the kernel writes a message to the console and halts (i.e., the
kernel panics). This event can occur for one of several reasons, including: the audit trail file has reached
its maximum size, or the file system containing the audit trail is full, or the audit trail is remote and
either the remote node failed or the communication connection failed.

This design does not address the problem of a highly auditing subsystem. Rather than build high
availability into each separate subsystem, the designers feel that a general mechanism for high
availability should be provided (say, a configurable attribute of a file system} so that a subsystem can
use it transparently, or without change to the design of the subsystem.

AUDIT TRAIL COMPRESSION

This section describes a design for on-line audit trail compression that is based on the design for audit
trail compression in Picciotto's paper, as referenced above. We shall point out the significant differences
below.

PICCIOTTO'S DESIGN FOR AUDIT TRAIL COMPRESSION

Picciotto's audit trail compression scheme works as follows. The kernel writes (raw, uncompressed)
audit records, not directly into the audit trail file, but into a sequence of temporary bin files, each with
the same fixed size. A user level daemon process runs in the background, reads uncompressed audit
records from the bins, one bin at a time, and writes compressed audit records into the audit trail file.
After processing a bin file, the daemon removes the bin file.

Picciotto’s design maintains a kernel variable, BINNUM, that helps specify the identity of the next bin
containing audit records. BINNUM is a 32-bit unsigned integer that is reset to 0 at boot time or when it
wraps. When the auditing subsystem is turned on the first time, the kernel creates a control bin file
named audit.bin, a well-known path name in the kermel, and writes the value of BINNUM in this file.
After creating audit.bin and writing BINNUM, the kernel closes audit.bin and creates audit.binX, where
X is the decimal encoding of BINNUM. For example, a 7 in audit.bin states that the next bin is
audit.bin7. The first record in audit.binX is a special record that contains the audit trail file name. Audit
bins are 30,000 bytes long (a compile time constant). When the kernel has written 30,000 bytes to one
bin, it writes an end-of-bin record, closes that bin, increments BINNUM, and opens the next new bin.

When the system is booted, the audit compression daemon, audcomp, is started as one of the local
daemons. It immediately forks a child process, audcomp.sub.-- ¢, that is responsible for compacting one
on-off auditing session. After each session, the child dies and audcomp forks a new child. The
audcomp.sub.-- ¢ process. waits until it finds the audit.bin file. When it finds this file, it reads BINNUM
from it, then deletes audit.bin. The audcomp.sub.-- ¢ then opens audit.binX and begins reading records,

http://patft.uspto.gov/netacgi/nph-Parser?Sect]1 =PT02&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 Page 25 of 30

compressing them and writing them to the audit trail file specified in the first record. At EQOF,
audcomp.sub.-- ¢ merely retries to read more data; EOF indicates that the consumer (audcomp.sub.-- ¢)
is faster than the producer (kernel). When audcomp.sub.-- ¢ reads the end-of-bin record, it first closes
and deletes the current bin, opens the next bin (bin numbers are sequential), and begins to read more raw
audit data.

‘When the auditing subsystem is turned off, the kemel writes an end-of-audit-session record to the
current bin, closes the bin, and increments BINNUM.

When audcomp.sub.-- ¢ encounters the end-of-session record, it closes both its input and output files,
deletes the former, and dies. Daemon audcomp then forks a new child that in turn waits for the
appearance of the audit.bin control file, and the compression activity then continues.

When the audit trail file is switched while the auditing subsystem is already on, the kernel simply writes

- a switch-file-name record to the current bin and continues without interruption.

THE AUDIT TRAIL COMPRESSION INVENTION

Our invention satisfies the following properties that Picciotto's paper does not address: (1) it has
file/directory location transparency; (2) many nodes can append audit records to one audit trail file; (3)
the compression daemon is a single process and is restartable after node failures during compression; (4)
the audit trail file can be on write-once-read-many media; and (5) there are no well-known file names in

the kernel. In addition, the system call interface does not know about compression. After presenting

elements of our invention below, we address each of the above five properties, and show that each
property is satisfied.

Kemel Support for Compression. When the auditor turns on auditing with the andit command, the audit
command saves the name of the audit trail file and current time in a a.sub.-- trail. The audit command
then calis the audit system call to turn on auditing, and the kernel checks if the audit trail file is a new
file.

If the audit trail file is new, then the kemnel creates the new audit trail file and a status file named x.ctl,
where x is the file name component of the audit trail file. The status file and bins are created in the same
directory tree as the audit trail file (not in the same directory as we shall explain below, but in a nid-
named subdirectory). A nid is a node (i.e., system, computer) identifier. The kernel then writes three
numbers into the status file, initially (1, 0, 0) and sets kernel variable BINNUM to 0. The three numbers
in the status file are nextBinNumber, lowBinNumber, and compressionlnProgress. Field
nextBinNumber is the next bin number to be used; only the kernel writes this value, not the audit
daemon. Field lowBinNumber contains the bin number of the lowest bin file that is not compressed, and
compressionInProgress is a flag that indicates if compression is in progress. Except for initial creation,
only the audit daemon writes fields lowBinNumber and compressionInProgress. So, initially (1, 0, 0)
means that 1 is the next bin number to be used, 0 is the number of the lowest bin that is not compressed,
and compression is not in progress. Both lowBinNumber and nextBinNumber count from 0 to 999 then
reset to 0 again, and so on. Using three digits for up to 1,000 bins was thought to be enough buffering to
offset any producer/consumer (i.e., kernel/daemon) speed mismatch. Other choices for the number of
bits (100, 1,000, 256 , . . .) would not change the principles of this invention.

If the audit trail file already exists, then the kernel reads nextBinNumber from the existing audit status
file and sets its BINNUM to nextBinNumber. The kernel also compares the nextBinNumber and
lowBinNumber in the status file. If the two numbers are equal, then the compression daemon has not
compressed previously generated andit bin files, and the kernel does not allow auditing to be turned on

| ~ http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 Page 26 of 30

this audit trail file. In the normal case, this situation should not happen.

After determining BINNUM, the kernel creates a temporary bin file named x.y, where x is as before and
y is the three-digit decimal representation of BINNUM. Since the maximum file name length in AIX is
currently fourteen, a four character suffix implies at most a ten character prefix. After creating x.y, the
kernel writes audit records into this bin. When the size of this bin would exceed a predetermined limit,
the kermel writes an end-of-bin record, closes the bin, increments BINNUM in the kemnel and
nextBinNumber in the status file, creates the new bin file, then starts using the new bin. Again, to
prevent possible error in the compression daemon, the kernel checks if BINNUM and lowBinNumber
are equal before creating the next bin file, If BINNUM and lowBinNumber are equal, then the kernel
writes a warning message on the console, restores the previous BINNUM, and does not switch the bin
file.

When the auditor turns off auditing with the audit command, the audit command removes the record
from a.sub.-- trail, appends the current time to the end of the record, sets the flag that indicates that this
audit trail is not compressed yet, and appends the entire record to a.sub.-- trail.past. When the kernel is
told to turn off auditing, it writes an end-of-session record into the current bin file, closes it, and turns
off kernel auditing.

When the auditor changes the audit trail file and the auditing subsystem is already on, the kernel writes
an end-of-session record in the bin, closes the bin, and proceeds as it would when auditing is turned on.

Compression Daemon. The audit compression daemon /etc/auditd 1s a background process that is started
when the system is booted. The audit daemon compresses one auditing session at a time, and it
compresses older sessions before newer ones. The audit daemon uses files a.sub.-- trail past and a.sub.--

“trail. File a.sub.-- trail.past contains data on all closed sessions, including if the session has been
compressed or not. File a.sub.—- trail contains data on the existing open session, if any.

The audit daemon works as follows. First it does recovery. Assuming that auditing is off, it examines
a.sub.-~ trail. If a.sub.-- trail is not empty, then a failure occurred during an open session. The audit
daemon reads the status file for the open trail, appends an end-of-session record to the last bin file,

- appends the end-time'd a.sub.-- trail entry to a.sub.-- trail.past, and empties a.sub.-- trail. These actions
reestablish the "invariants" of a.sub.-- trail.past and a.sub.-- trail. Second, the audit daemon reestablishes
the session-compression invariant as follows. It searches the audit trail forward and identifies the
youngest uncompressed session. If such an uncompressed session exists, then it searches the audit trail
backwards for the first record with this nid, and gets the bin number. If the compressionInProgress flag
is 1, then cleanup is necessary. Cleanup here means possibly removing an already compressed bin file,
" then updating lowBinNumber and compressionInProgress in the status file. Third, the audit daemon
disassociates from the process group and controlling terminal; it forks a child and exits the parent.

" Fourth, the audit daemon begins its normal compression mode, compressing one session at a time, and
compressing an older session before a newer one.

-~ Session compression uses the pack command algorithm, a Huffman encoding algorithm. This algorithm
requires that all data be read before it can start compression. If the daemon encounters an EOF, this
means that the consumer (daemon) is faster than the producer (kemel). Thus, on EOF the daemon waits
and tries to read more later. The true end of a bin is indicated by an end-of-bin or switch-bin record. To
compress a bin, the daemon writes a 1 for compressionInProgress in the status file, compresses the bin
and writes a three-part frame to the audit trail file in one atomic write, removes the bin file, and writes
++HowBinNumber and compressionInProgress value 0 to the status file.

The three-part frame consists of (head, body, tail), where the head and tail are identical and fixed size,

| http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PT0O2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

rrran

United States Patent: 5,032,979 - Page 27 of 30

and the body consists of a compressed bin. The head (and tail) part consists of (id, bin#, before.sub.--
length, after.sub.-- length, nid) as described above. With three-part frames with identical head-tail pairs
and with length values in each, we can read the audit trail forwards or backwards.

File/Directory Location Transparency. In our inveation, a.sub.-- state, a.sub.-- trail and a trail past are
node-specific, so they reside under /local in directory /local/etc/security/audit. Furthermore, the bins are
node-specific. Since we do not want to introduce any well-known pathnames into the kernel, we can
create bins somewhere under the directory that contains the audit trail file, which the kernel determines
at audit-on time. If we create these bins in the same directory as the audit trail file and if this directory is
remote, then it is possible for bin name collisions; two or more nodes can "step on" the same bins. To
avoid this problem, we can create bins in a nid-specific (say, nid-named) subdirectory of the directory
containing the audit trail file. The audit daemon /etc/auditd reads a.sub.-- trail to find the bins and audit
trail file. This design is oblivious to the local/remote location of the audit trail file and the directory that
contains the audit trail file, because node-specific auditing data is segregated.

- Many Nodes Can Feed One Audit Trail File. We use DS transparency to write audit records from many
nodes to a single audit trail file. We need to show that the auditpr command does not get confused; it can
unambiguously read the audit trail file and decompresses audit trail records potentially from many
source nodes. The problem that we need to solve is how to decompress the interleaved compressed audit
records from more than one node. We solve this problem by compressing each bin in one step, prepend
an uncompressed checkpoint header to the compressed bin, append an uncompressed checkpoint trailer
to the compressed bin, and append the (uncompressed head, compressed bin, uncompressed tail) to the
andit trail in one atomic write. We do the atomic write by first writing the record to a temporary file,
then reading it in one step with one read system call then appending it in one step with one write system
call.

Write-Once-Read-Many Media for Audit Trail File. For writing, we always open the audit trail file for
append-only access, and we write (uncompressed checkpoint head, compressed bin, uncompressed
checkpoint tail) frames of records in one atomic write.

No Well-Known Pathnames in the Kernel. By design, the kernel gets all the pathname information it
needs to know from the audit trail name argument of the audit system call.

Compression Daemon Recovery and Restartability. The next section explains this.
RECOVERY AND RESTARTABILITY OF AUDIT DAEMON

This section focuses on the recovery and restartability of the audit daemon. By "recovery” we mean that,
after a node failure, the daemon can resume normal operation. By "restartability” we mean that, if we
execute any "prefix" of the code and then a node failure occurs, then we can obliviously reexecute the

- code from the beginning, and, that this can occur any number of times.

To help explain the audit daemon invention, Appendix A contains pseudo-code (skeleton, C-like code)
for the audit daemon. FIG. 6 is a flow diagram of the audit daemon code of Appendix A. This code has
two functions: main() and sessionCompress(). Function main() has two large steps, a recovery step then
a normal operation step. Function sessionCompress() compresses all bins in the given auditing session.
An auditing session consists of all recorded audit events between an on-off or on-switch or switch-
switch or switch-off or on-failure or switch-failure node events, where "failure” means a node failure.
An auditing session is either open or closed. A closed auditing session ends with an end-of-session
record, whereas an open auditing session does not. A session can be open if the auditing subsystem is
enabled and in normal operation or if a failure occurred while the auditing subsystem was enabled.

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

g

United States Patent: 5,032,979 Page 28 of 30

This section has four subsections: invariants, recovery, normal operation, and restartability. Here,
recovery simply reestablishes certain invariant assertions of the design, so we must review these
invariants before we discuss recovery.

INVARTIANTS

To understand the audit daemon pseudo-code, it is necessary to understand the invariants of file a.sub.--
trail, of file a.sub.-- trail.past, and of function sessionCompress().

The invariant of a_sub.-- trail is that it contains data on an existing open audit session, if any, If there is
no existing open session, then file a.sub.-- trail exists but is empty.

The invariant of a.sub.-- trail.past is that it contains data on all closed audit sessions, sorted by start time.
- Associated with each closed audit session in fife a.sub.-- trail. past is a start time and a stop time and a
compression-completion flag.

* The invariant associated with function sessionCompress() is assertion aQ (with label a0) as defined in the
pseudo-code. Function sessionCompress() compresses all bins in the given auditing session; it can be
used for compressing bins in a closed or open session. Function main() makes sure that older sessions
are compressed before younger (newer) ones. Assertion a0 states that, for the current bin file b, bin
compression is not in progress and file b exists and b is not already on the andit trail. In other words,
sessionCompress() is ready.

RECOVERY

Recovery, the first large step in function main(), makes sure that the invariants for a trail and a.sub.--
trail.past and sessionCompress() are established, and reestablishes them if necessary as follows.

If a.sub.-- trail is not empty, then a node failure occurred during an open auditing session. To reestablish
the invariants of a.sub.-- trail and a.sub.-- trail.past, read the a.sub.-- trail entry, read Next (next bin to be
compressed) from the x.ctl file, append an end-of-session record to the end of bin Next-1 if it is not
already there, if the last record of a.sub.-- trail.past is not this one then append the end-time'd a.sub.--
trail entry to a.sub.-- trail.past, and empty a.sub.-- trail.

To reestablish the invariant of sessionCompress(), search a.sub.-- trail.past forwards and identify the
youngest uncompressed session. If an uncompressed session exists, then fix things by scrutinizing
assertions al-a5 and intervening steps s1-s4 at the bottom of function sessionCompress(), and using a
simple case analysis. The code in main() to reestablish the invariant of sessionCompress() either
‘removes a bin file or rewrites the x.ctl file or both. The flag variable in sessionCompress() is 1 when
compression of bin b is in progress and 0 otherwise. The value of this flag is written to stable disk
storage (with system calls write and fsync, the latter a per file sync in ATX) as necessary for recovery to
know the state of compression of bin b.

NORMAL OPERATION

In normal operation, the audit daemon compresses one auditing session at a time, and it compresses
older sessions before newer ones. To find the oldest uncompressed session, the audit daemon examines
a.sub.-- trail.past then a.sub.-- trail and looks for the oldest entry with a session compression flag of 0. If
it finds such an uncompressed session, then it calls function sessionCompress(), then afterwards it marks
the session as compressed in a.sub.-- trail.past.

hitp://patfi.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u~/netaht... 12/20/2005

United States Patent: 5,032,979 Page 29 of 30

Function sessionCompress(trail) compresses all bins in the given auditing session. It uses file x.ctl to
look for the next bin to compress. If the next bin does not contain an end-of-bin or end-of-session
record, then sessionCompress() sleeps for awhile and checks again. When a bin is available, it sets the
compression in progress flag to 1 and writes this to file x.ctl, then compresses the bin and appends the
three-part frame to the audit trail, then it removes the bin file, then it sets the compression in progress
flag to 0 and increments the low bin number and writes these two values to file x.ctl. As long as no end-
of-session record is found, it continues to compress successive bins this way.

FR2 A

RESTARTABILITY

The code in functions main() and sessionCompress() is restartable. This pseudo-code shows that for all
the steps, a failure and then reexecution of already executed steps makes no difference.

SUMMARY

‘We have described a computer auditing subsystem that satisfies the following requirements and
properties:

(a) Software environment requirements:

runs in a UNIX (or AIX or UNIX-like) operating system environment with a hierarchical file system and
with an atomic write operation like the write () systerm call, and

Tuns in an operating system environment with local/remote file/directory location transparency, such as a
"virtual mount™ or "remote mount" based mechanism (e.g.,) IBM RT PC AIX Distributed Services, also
known as DS); ‘

(b) Security requirement:

provides an auditing framework to help satisfy the Audit Requirement for classes C2 to Al of the
Orange Book;

(c) Invention properties: ’

performs on-line compression of the audit trail log file using a single audit daemon process per system,
" has a restartable audit daemon that recovers after node failures,

for DS or a similar mechanism, has file/directory location transparency,

for DS or a similar mechanism, lets many nodes append audit records to one audit irail log file, and
captures the login user ID, can prevent login as a pseudo-user like root, but can allow su ("substitute
user") to a pseudo-user like root. [
(d) Additional properties:

lets the audit trail log file be on write-once media, and

has no well-known file names in the operating system kernel part of the auditing subsystem, and cuts
exactly one audit trail record per system call if the corresponding base event is enabled and exercised.

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,032,979 Page 30 of 30

In the current design, the default bin size is 20,480 bytes (20 KB=10.times.2048, or the 10 "directs" in
an AIX inode structure), and compression averages about 50 percent.

CROSS REFERENCE TO RELATED APPLICATIONS

This application is related in subject matter to the following applications filed on Feb. 13, 1987 and
assigned to IBM Corporation:

Application Ser. No. 07/014,899 filed by A. Chang, G. H. Neuman, A, A. Shaheen-Gouda, and T. A.
. Smith for "A System and Method for Using Cached Data at a Local Node After Re-Opening a File at a
Remote Node in a Distributed Networking Environment" now U.S. Pat. No. 4,897,781.

Application Ser. No. 07/014,884 filed by D. W. Johnson, L. W. Henson, A. A. Shaheen-Gouda, and T.
A. Smith for "A System and Method for Version Level Negotiation" now abandoned file Parent of a File
.. Wrapper Continuation (FWC) application Ser. No. 07/352,711 filed on May 11, 1989,

Application Ser. No. 07/014,900 filed by D. W. Johnson, A. A. Shaheen-Gouda, T. A. Smith for
"Distributed File Access Structure Lock" now abaandoned file Parent of a File Wrapper Continnation
(FWC) application Ser. No. 07/418,750 filed on Oct. 4, 1989.

Application Ser. No. 07/014,891 filed by L. W. Henson, A. A. Shaheen-Gouda, and T. A. Smith for
"Distributed File and Record Locking".

Application Ser. No. 07/014,892 filed by D. W. Johnson, L. K. Loucks, C. H. Sauer, and T. A. Smith for
"Single System Image" now abandoned file Parent of a File Wrapper Continuation (FEWC) application
Ser. No. 07/401,546 filed on Sep. 1, 1989,

Application Ser. No. 07/014,888 filed by D. W. Johnson, L. K. Loucks, A. A. Shaheen-Gouda for
"Interprocess Communication Queue Location Transparency."

Application Ser. No. 07/014,889 filed by D. W. Johnson, A. A. Shaheen-Gouda, and T. A. Smith for
"Directory Cache Management in a Distributed Data Processing System."

The disclosures of the foregoing copending applications are incorporated herein by reference. |
Although a specific embodiment of the invention has been disclosed it would be understood by those

having skill in the art that the minor changes can be made to the specific embodiment without departing
from the spirit and the scope of the invention, ##SPC1##

LR R

Images

[view Car't] 'Add to Cart]

[Hit List ”Previnus—]: Next “ Top l

(e][) anead o J_sn]

http://patfi.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

