510

* United States Patent: 4,742,450 Page 1 of 10

 /USPTO PATENT FULL'TEXT AND IMAGE DATABASE

T T TS

[Hit List][El_:_e_ﬂq_qg]' Next][Bottom]

[View Carq 'ﬁdd to Cart]

Images L

(260£27)
United States Patent 4,742,450 |
Duvall, etal. May 3, 1988 &

Method to share copy on write segment for mapped files
Abstract

A method for facilitating the interchange of data in a UNIX* file between two UNVIX processes being
run concurrently on two virtual machines in a page segmented virtual memory virtual machine type data
processing system. A Shared Copy-On-Write (SCOW) command is created for the UNIX type operating
system which when executed in response to a system call from one processes causes the specified UNIX
file to be mapped to a unique segment of the virtual memory. A map node data structure is established
for storing the ID of the unique segment and for maintaining a count value of the number of user sharing
the unique segment. A system call to the SCOW command by the second process involving the same
UNIX file checks the map node data structure to see if the file is currently mapped for the SCOW mode.
Subsequent instructions in the application programs which are run concurrently on the virtual machines
operate on the copy of the file in the unique segment so that any data that is changed, i.e. written by one
process, is available to be read by the second process. UNIX is a Trademark of AT&T. ‘

Inventors: Duvall; Keith E. (Georgetown, TX); Hooten; Anthony D. (Round Rock, TX); Loucks;
Larry K. (Austin, TX) i
. Assignee: International Business Machines Corporation (Armonk, NY)
" Appl. No.: 819455
Filed: January 16, 1986

TEST

~ Current U.S. Class: 719/310; 709/203
- Intern'l Class: GOG6F 012/08 ‘
' Field of Search: 364/200 MS File,900 MS File r

References Cited [Referenced By}
U.S. Patent Documents

4135240 Jan., 1979 Ritchie 364/200.
4435752 Mar., 1984 Winkelman 364/200.

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/metaht... 12/20/2005

United States Patent: 4,742,450 Page 2 of 10

| 4625081 Nov., 1986 Lotito et al. 379/196.

Primary Examiner: Williaws, Jr.; Archie E.
Assistant Examiner: Munteanu; Florin
Attorney, Agent or Firm: Cummins; Richard E.

Claims

What is claimed is:

1. A method for facilitating the interchange of data stored in a Unix file between two UNIX processes
being run concurrently on two virtual machines in a page segmented virtual memory virtual machine
type data processing system having,

(1) a2 main memory including,
a first plurality of byte addressable storage locations each of which functions to store one Byte of data,
'(2) a secondary storage device including,

a second plurality of block addressable storage locations each of which functions to store at least one
virtual page of data,

(3) a virtual resource manager for creating at least first and second virtual machines having a UNIX type
Operating System {UOS} program which includes,

(a) conventional UNIX commands including commands for opening and creating new UNIX files, data
transfer commands having parameters for specifying UNIX file data to be transferred between said
device and said main memory, a map instruction which functions to map a specified UNIX file stored in
said device to virtual pages in another segment of said virtual memory so as to relate the newly assigned
_page addresses in said another segment to said corresponding block address in said device,

(b) /O subroutines which run when said transfer commands are executed,

" (c) means for storing said map instruction at a virtual address in a predetermined segment of said virtual
memory, and

(d) means for storing a UNIX offset pointer,
" (4) an application program which includes conventional Unix system calls to said commands, and
(5) 2 memory manager program having,

(a) Load and Store type of instructions employing a virtual address for transferring a page of data
between said device and said main memory,

(b) a page fault handling mechanism for resolving a page fault that occurs as a result of said application

program executing one of said Load and Store instructions involving a virtual page which is not
currently stored in said main memory, and

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

gon

United States Patent: 4,742,450 Page 3 of 10

(6) means for causing said data transfers defined in said system calls to be made under the control of
said memory manager and said page fault handling mechanism, rather than said I/O subroutines of said
UOS, including means for dynamically generating another said virtual page address within the address
range of said another segment by translating said command parameters and said offset pointer for said
specified file in response to each said data transfer command,

said method facilitating said interchange of said data between said two processes being run concurrently
by said first and second virtual machines involving one specified UNIX File, said method comprising
“the steps of:

(A) creating a shared-copy-on-write (SCOW) command for said UOS which functions to cause a Unix
file specified thereby to be mapped to a unique segment by said map instruction, said SCOW command
including a first field for storing an indication to distinguish said SCOW command from a conventional
copy-on-write command,

(B) executing a system call in a first application program being run by said first virtual machine to said
SCOW command to cause said specified file to be mapped to said unique segment,

(C) establishing a map node data structure with said UOS which includes the step of establishing a
SCOW segment ID field to store the segment ID of said unique segment,

(D) storing said unique segment ID in said SCOW segment ID field of said map node data structure in
response to mapping said specified file,

(E) executing a system call in a second application program to said SCOW command,

(F) checking said map node data structure to determine if said specified file is currently mapped in a
mode to be shared, and

(G) running said first and second application programs concurrently whereby data in said specified file
~ that is written by either application program is readily available to be read by the other application
program.

2. The method recited in claim 1 in which said step of establishing said map node data structure further
includes the step of establishing a count field for storing a value indicative of the number of virtual
machines that currently have access to said unique segment.

3. The method recited in claim 2 further including the step of updating said value in said count field after
said step of checking said map node data structure.

4. The method recited in claim 3 in which said step of updating said value includes the step of
incrementing said count by one when another virtual machine starts sharing said unique segment and the
step of decrementing said count when a virtual machine stops sharing said segment.

5. The method recited in claim 4 further including the step of destroying said unique segment in
response to said step of decrementing said value to zero.

6. The method set forth in claim 5 in which said step of running further includes the steps of changing

data stored in said unique segment in accordance with instructions being processed by said first virtual
‘machine and reading said changed data in accordance with instructions being processed by said second

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2& Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

O S

u
o

United States Patent: 4,742,450 ‘ Page 4 of 10

_virtual machine.

Description

TECHNICAL FIELD

The invention relates in general to methods for controlling access to data stored in a virtual memory of a
multi-user information handling system which is being run under a UNIX* type operating system. The
invention relates, in particular, to a method which permits a user to gain access to a file stored in a
virtual memory segment in order to update it, even though another user has previously requested access
to the same virtual memory segment of the file and is in the process of currently updating that segment.

*Unix is a trademark of A.T. & T.
CROSS-REFERENCED APPLICATIONS

U.S. application Ser. No. 06/819,458 filed concurrently herewith in the name of Duvall et al, entitled
"Method to Control I/O Access in a Multi-Tasking, Virtual Memory, Virtual Machine Type Data
Processing System” is directed to a method for use in a multi-user paged segmented virtual memory data
processing system in which a mapped file data structure is selectively created to permit all /O
operations to the secondary storage devices to be executed by simple load and store instructions under

" the control of the page fault handler.

BACKGROUND ART

The prior art discloses various multi-user virtual memory information handling systems. In general, a
virtual memory system implies a system having a main memory that is relatively fast, but somewhat
limited in capacity, because of its cost, and a backing store device which is relatively slow, but is rather
large, since the cost of storage per bit is relatively inexpensive. Implicit also in a virtual memory system
is a paging system which functions to control the transfer of data between the main memory and the
‘backing store. In practice, the main memory is generally a semiconductor memory array, while the
backing store is generally one or more disk drives or files, some of which may even allow the media to
be replaced by an operator.

The main memory has its own arrangement for defining real address storage locations, as does the disk
storage subsystem. The system, therefore, employs a virtual address when requesting data from storage.
The Virtual Memory Manager (VMM) has the responsibility to check that the data at the virtual address
* is in main memory and if not, to transfer the data to main memory from the backing store. The specific
- manner in which the Virtual Memory Manager accomplishes the transfer varies significantly among the

" prior art systems, primarily because of the inherent characteristics of the specific hardware, including the

conventions adopted for defining real addresses of the storage devices and also because of the
differences in the operating systems under which the hardware is being run.

The motivation for creating a virtual memory type system is based primarily on the realization that the
cost of providing real memory for the system of a size that would support either one complex program,
or a number of smaller programs which could be run concurrently by one or more users, is prohibitive.
Further, since generally there is no real reason for having the entire program resident in main memory, it
would be more cost effective to store the program data on less expensive disk file backing stores and
"page" portions of the data and program into main memory, as required. The paging process, when

hitp://patft.uspto.gov/netacgi/mph-Parser?Sect 1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 4,742,450 Page 5 of 10

conducted by the Virtual Memory Manager, does not significantly impact the overall system
performance, since the main processor can switch to another task or process which has previously been
paged into main memory.

The prior art virtual memory systems employ various operating systems since an operating system is
generally designed to take advantage of the architecture of the processing unit and a particular

~ application or environment. Some operating systems, such as PC DOS, for the family of IBM Personal
Computers (PCs) and compatibles, is designed primarily for a single user environment. On the other

. hand, the UNIX operating system is designed primarily for a multi-user environment. The use of the

- UNIX operation system has, for a number of technical and non-technical reasons, been somewhat
restricted to particular systems. As a result, the number of application programs that are run under a
UNIX operating system have, until recently, been also rather limited. Multi-user UNIX systems
employing virtual memory have even been more limited.

.+ The manner in which UNIX implements System Calls, particularly to storage, is in many respects quite
. advantageous to system performance. In UNIX, the System Call is the interface between UNIX and an

“application program. A System Call by the application program requests the "kernel" portion of the
UNIX operating system to perform one particular task or service on behalf of the operating system. The
"kernel" portion of UNIX includes approximately 60 System Calls which are not changed between
different hardware systems, and are the standard interface to UNIX. Other programs in UNIX adopt the
kernel to the particular hardware environment.

UNIX has a unique file system for managing data stored on the systems' external storage devices, e.g.,
disk files. While UNIX allows a file to be accessed by many different concurrent users, if the file is to be
updated, additional System Calls are required in order to insure that the updating occurs in a serial
fashion. These additional System Calls function to lock portions of the file temporarily, reserving that
area for the exclusive use of the calling program that is to do the updating. This does require
involvement by the "kernel” in the locking and unlocking tasks and, hence, has an adverse effect on
overall system performance. The prior art non-virtnal UNIX systems do, nevertheless, permit the
concurrent use of the same file by different users. The ability to share a portion of the same file among
various users is advantageous for interprogram or interprocess communication, in that once the portion

~of the file is updated by one program, the data is immediately available to all the other programs or
processes that are sharing that segment. The term "process,” in UNIX terminology, means simply a
program that it is currently executing.

The memory management function of a typical UNIX operating system is a part of the UNIX kernel and
generally is unique for each different Central Processing Unit. Some processing units require the total
program to be in memory before any portion of the program can be run. Other CPUs can begin
execution of a program while only a small portion is in active memory. The first memory management
technique is referred to as "swapping,” in that different processes or programs are run for a given period
of time and then the entire program is "swapped" out for another program. The second technique is the

~ Virtual Memory technique, which implies that provision must be made for the memory management
function to handle page faults, so that defined portions or pages of the program can be brought into main
memory as needed and refurned to the back-up store when the pages are no longer required.

If the Virtual Memory Management function is left with the kernel of the UNIX operating system, the
page fault mechanism will consume a considerable portion of the CPU operating time. As a result, prior
art virtual memory systems generally prefer to establish a Virtual Memory Management function as a
separate level of programming on a device whose primary function is memory management. The page
fault mechanism is then a part of the memory manager, and the CPU is free from time-consuming tasks
of controlling the paging operation.

http://patft.uspto.gov/netacgi/nph-Parser?Sect1 =PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 4,742,450 Page 6 of 10

In the cross-referenced application Ser, No. 819,458, a virtual memory data processing system is
disclosed in which virtual machines are established by a Virtual Resource Manager which provides each
virtual machine with a large virtual memory. In that system, to avoid the potential conflicts that arise in
some virtual memory systems between the operating system's request for 1/O disk storage operations and
/0 disk storage operations controlled by the page fault handler, the responsibility for performing all I/O
disk storage operations was assigned solely to the page fault handling mechanism. In addition, the
normal UNIX interface to the application program by System Calls was supplemented by a mapped
page technique. This latter technique permitted the application program to emp]oy simple load and store
type instructions to address memory, rather than tie up the system processor in executing UNIX System
Calls to the disk storage. Any file stored in a defined segment of virtual memory could be mapped at the
request of the application program which, in effect, established a table of virtual addresses and assigned
disk block addresses for each page of data that was in the defined segment of virtual memory assigned to
that file. The table or map was stored in a separate "segment” of the virtual memory.

The "kernel" of the UNIX operating system was enhanced to provide a new System Call designated

"SHMAT.sub.-- MAP." The conventional UNIX operating system includes a variety of "SHMAT"

System Calls, each with a slightly different function, such as (1) read only, (2) read/write, (3) copy.sub.-

- on.sub.-- write, etc. The SHMAT.sub.-- MAP command was also provided with the corresponding
functions.

Since the system described in the cross-referenced application was designed to operate with applications
previously written for a conventional UNIX operating system, all UNIX System Calls had to be
supported. The support is transparent to the user, in that any conventional UNIX System Call from an
application program to the UNIX kemel is effectively intercepted by the Memory Manager, which then
assigns the tasks to the page fault mechanism. Thus, in that system, the SHMAT .sub.-- MAP command
further specified whether the file was to be mapped, read/write (R/W), read only (RO) or copy.sub.--
on.sub.-- write (CW). The copy.sub.-- on.sub.-- write function in UNIX allows a file in system memory
to be changed. When the CW file is paged out of real memory, it does not replace the permanent file. A
separate System Call is required for the copy.sub.-- on.sub.-- write file, which is usually in a disk cache,
to replace the permanent copy of the file in the secondary storage device. Two users who concurrently
map a file read/write or read only share the same mapped segment. However, each user who requests to
map the same file, copy.sub.-- on.sub.-- write, at the same time, create their own private copy.sub.--
on.sub.-- write segment. The term segment implies a section of the virtual address space. Each user is
permitted to have only one CW segment for a given file at one time. The system of the cross-referenced
‘application, therefore, is fully compatible with the prior art UNIX approach for shared files.

This aspect of the common design, however, perpetuates the problem which exists with UNIX files, in
that the sharing of a mapped file CW segment by multiple users is prohibited. The capability of multiple
users sharing the same mapped file copy.sub.-- on.sub.-- write segment is highly desirable, and a method
of achieving that function in systems of the type described in the cross-referenced application is the
subject of the present invention.

SUMMARY OF THE INVENTION

In accordance with the method of the present invention, an additional System Call flag is created for the
"SHMAT" type System Calls. When this flag is specified by the user in combination with the System
Call for a copy.sub.-- on.sub.-- write segment, a common copy.sub.-- on.sub.-- write segment is created
for the mapped file.

The first user to request the shared copy.sub.-- on.sub.-- write segment for the file causes creation of a

http://patft.uspto.gov/netacgi/nph—Parse;?Sect1=PT02&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

T T T oL NPT

United States Patent: 4,742,450 Page 7 of 10

common mapped file copy.sub.-- on.sub.-- write segment. The segment ID for this segment would then
be saved in a data structure such as the inode data structure for the UNIX file, so that any future request
for the shared copy.sub.-- on.sub.-- write segment for the mapped file causes the common copy.sub.--
on.sub.-- write segment to be used.

Also saved in the inode structure is a reference counter, used to indicate how many users currently have
access to the shared segment (CW). Each request for the shared copy.sub.-- on.sub.-- write segment for
the file causes the counter to be incremented and each closing of the file descriptor by a user accessing
the file reference by the file descriptor via the copy.sub.-- on.sub.-- write segment causes the counter to
be decremented. Every time the counter is decremented, a check is made to see if the counter has
become zero, and if so, the shared copy.sub.-- on.sub.-- write segment is destroyed so that a future
request for a shared copy.sub.-- on.sub.-- write segment for the file causes a new shared copy.sub.--
on.sub.-- write segment to be traded (and a new segment ID placed in the inode structure for the file).

All existing mapped file features continue to be supported, as described in the cross-referenced
application; (1) whenever a file is mapped there exists a read/write segment for the mapped file, so that
read or write System Calls reference the file by the mapped file read/write segment; (2) the support of
private copy.sub.-- on.sub.-- write segments is maintained so that a user can still continue to request a
private copy.sub.-- on.sub.-- write version of the file.

It is therefore an object of the present invention to provide an improved method for a number of data
processing system users who are concurrently running separate UNIX processes in a page segment
virtual memory environment to share a copy of the file in the same segment of virtual memory.

A further object of the present invention is to provide an improved method for users in a virtual memory
data processing system running a UNIX type operating system to concurrently share a file that has been
designated copy.sub.-- on.sub.-- write by a SHMAT type UNIX System Call.

A further object of the present invention is to provide a new method for permitting users of a UNIX
operating system to concurrently share a file that has been opened by a shared copy.sub.-- on.sub.--

write UNIX System Call by employing the same mapped copy.sub.-- on.sub.-- write segment of the
~ virtual memory.

Objects and advantages other than those mentioned above will become apparent from the following
description, when read in connection with the drawing.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a schematic illustration of a virtual memory system in which the method of the present
invention may be advantageously employed.

FIG. 2 illustrates the interrelationship of the Virtual Resource Manager shown in FIG. 1 to the data
processing system and a virtual machine.

FIG. 3 illustrates the virtual storage model for the system shown in FIG. 1.
FIG. 4 illustrates conceptually, the address translation function of the system shown in FIG. 1.
FIG. 5 illustrates the interrelationships of some of the data structures employed in the system of FIG. 1.

FIG. 6 illustrates the interrelationship of a number of data structures to the Virtual Resource Manager,

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PT02&Sect2~HITOFF&p=1&u=/netaht... 12/20/2005

T S SR IPPOURI EE S N

United States Patent: 4,742,450 Page 8 of 10

the virtual memory, and real memory.

FIGS. 7A and 7B show a flow chart, illustrating the operation of mapping a file copy.sub.-- on.sub.--
write.

FIG. 8 is a flow chart, illustrating the steps involved in completing the data structures shown in FIG. 6
by a map page range service.

DESCRIPTION OF THE PREFERRED EMBODIMENT

System Overview: FIG. 1 is a schematic illustration of a virtual memory system in which the method of
the present invention is employed. As shown in FIG. 1., the system comprises a hardware section 10 and
a software or programming section 11. Hardware section 10, as shown, comprises a processor function
12, a memory management function 13, a system memory function or RAM 14, system bus 15, an
Input/Output Channel Controller (IOCC) 16, and an Input/Output bus 21. The hardware section further
includes a group of I/O devices attached to the I/O bus 21 through the IOCC 16, including a disk storage
function 17, a display function 18, a co-processor function 19, and block 20, representing other /0
.devices such as a keyboard or mouse-type device.

The program section of the system includes the application program 22 that is to be run on the system, a
group of application development programs 23, or tools to assist in developing new applications, an
operating system kernel 24, which, for example, may be an extension of the UNIX system V kernel, and
a Virtual Resource Manager program 25, which functions to permit a number of virtual machines to be
created, each of which is running a different operating system, but sharing the system resources. The

system may operate, therefore, in a multi-tasking, multi-user environment which is one of the main
reasons for requiring a large virtual memory type storage system.

FIG. 2 illustrates the relationship of the Virtual Resource Manager 25 to the other components of the
system. As shown in FIG. 2, a virtual machine includes one or more application programs such as 22a-
22¢ and at least one operating system 30. A virtual machine interface 31 is established between the
virtual machine and the VRM 25. A hardware interface 32 is also established between the VRM 25 and
the hardware section 10. The VRM 25 supports virtual memory. It can be assumed, for purposes of
explanation, that the memory capabilities of the hardware shown in FIG. 1 includes a 24 bit address
space for system memory 14, which equates to a capacity of 16 megabytes for memory 14, and a 40 bit
address space for virtual memory, which equates to 1 terrabyte of memory. A paged segmentation
technique is implemented for the Memory Management Unit 13, so that the total virtual address space is
. divided into 4,096 memory segments, with each memory segment occupying 256 megabytes. FIG. 3

" illustrates the virtual storage model. The processor 12 provides a 32 bit effective address which is
specified, for example, by the application program. The high order 4 bits of the 32 bit address functions
to select 1 of 16 segment registers which are located in the Memory Management Unit (MMU) 13. Each
segment register contains a 12 bit segment ID section, along with other special control-type bits. The 12
bit segment ID is concatenated with the remaining 28 bits of the initial effective address to provide the
40 bit virtual address for the system. The 40 bit virtual address is subsequently translated to a 24 bit real
address, which is used to address the system memory 14,

The MMU 13 utilizes a Translation Look-aside Buffer (TLB) to contain translations of the most recently
used virtual addresses. Hardware is used to automatically update TLB entries from main storage page
tables as new virtual addresses are presented to the TLBs for translation. FIG. 4 illustrates conceptually,
the TLB reload function.

" " The 40 bit virtual addresses are loaded into the TLB by looking them up in an Inverted Page Table

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

LT T T e U RS PP AR

United States Patent: 4,742,450 Page 9 of 10

(IPT), as shown in FIG. 4. The table is "inverted" because it contains one entry for each real memory
page, rather than one per virtual page. Thus, a fixed portion of real memory is required for the IPT,
regardless of the number of processes or virtual segments supported. To translate an address, a hashing
function is applied to the virtual page number (high order part of the 40 bit virtual address, less the page
offset) to obtain an index to the Hash Anchor Table (HAT). Each HAT entry points to a chain of IPT
entries with the same hash value. A linear search of the hash chain yields the IPT entry and, thus, the
real page number which corresponds to the original 40 bit virtual address. If no such entry is found, then
the virtual page has not been mapped into the system, and a page fault interrupt is taken.

The function of the Page Fault Handler (PFH) is to assign real memory to the referenced virtual page
and to perform the necessary /O to transfer the requested data into the real memory. The system is, thus,
a demand paging type system.

When real memory becomes full, the PFH is also responsible for selecting which page of data is paged

" out. The selection is done by a suitable algorithm such as a clock page replacement algorithm, where

pages are replaced based on when the page was last used or referenced. Pages are transferred out to disk

storage.

The details of the other data structures employed by the system shown in FIGS. 1 and 2 are set forth in
the cross-referenced application, particularly Ser. No. 819,458, which is herein incorporated by
reference. Similarly, the data structures which were unique to the map file service function of that
application are also employed in the method of the present invention. Reference should be made to FIG.
6, specifically to the map node data structures 70 and 71. These two structures are described in detail in
the cross-referenced application. The copy.sub.-- on.sub.-- write segment field 74 and the copy.sub.--
on.sub.-- write map count field 75 are the two specific fields of the map node data structure employed in
the method of the present invention to permit concurrent use of a copy.sub.-- on.sub.-- write segment.

FIGS. 7A and 7B show a flow chart, illustrating the operation of the mapping of the file copy.sub.--
on.sub.-- write by an application. The application initiates a process that issues an SHMAT.sub.--
COPY .sub.-- ON.sub.-- WRITE instruction as indicated by block 100.

Block 101 determines if the file is currently mapped read/write, by checking the inode data structure. If
the file is currently mapped, the process is terminated at block 102, since protocol does not permit a file
to be both mapped copy.sub.-- on.sub.-- write and read/write.

If the file is not currently mapped, block 103 tests to determine if the segment exists by checking the

“inode data structure. If the segment exists, the block 104 tests the map node data structure 70 to

determine if a copy.sub.-- on.sub.-- write segment exists, block 105 then increments the reference count
field 75 in map node 70 by 1 and obtains the segment ID from the map node in block 106. Block 107
loads the segment register with the obtained ID and block 108 tests if the file is currently mapped. Block

- 109 represents the mapped page range service function which is called to map the file from block 108. If

block 108 indicates the segment is mapped copy.sub.-- on.sub.-- write, the process ends at block 110. If

. block 103 indicates that the segment does not exist, block 111 creates the segment by issuing a call to

the create segment service of the system. The test in block 104 is then made and if a copy.sub.-- on.sub.-
- write segment does not exist, a call to the create copy.sub.-- on.sub.—- write segment in block 112 is
made. The count in the map node field 75 is incremented and the process flow continues, as previously
described.

When the process issues a UNIX read system or load instruction in block 115, or 2 UNIX write System

Call or a store instruction in block 116, the operation performs a basic memory reference process, as
indicated in block 117. Block 118 tests the Inverted Page Table to determine if a page is in system

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PT02&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

TR

United States Patent: 4,742,450 Page 10 0of 10

memory. If not, block 119 allocates a page frame in main memory. This requires an I/O operation in
block 120, which halts the process until the page frame is allocated. If block 119 indicates the page is in
memory, block 121 tests to see if a read (or load) operation is involved. If so, a request is placed in the
I/O queue by block 122.

If a write or store operation is involved, block 123 prepares the page and blocks 124 and 125 prepare the
system to receive the copy.sub.-- on.sub.-- write page in a paging space allocation on the disk file for
copy.sub.-- on.sub.-- write pages. These operations require I/O to the disk file and, therefore, they are
queued by block 122,

FIG. 8 is a flow chart, illustrating the steps involved by page range service in completing the map node
data structure 70 and the mapped file data structure 71, shown in FIG. 6.

- After a segment has been created the file must be mapped into the segment. This is a dynamic operation,
since the primary storage allocation is virtual, and the segment assignment is transient. As illustrated in
FIG. 8 the inode structure 181 is read for the block address of each page to be allocated for the file. Each
group of contiguously allocated blocks is summed, and the count recorded in the field adjacent to the
starting block number 2 entry in the map page range structure. Discontigrous blocks are reflected in
discrete entries in the map page range structure. When the entire file inode structure has been scanned,
the map page range SVC is issued and the external page table slot entries for the appropriate segment are
updated with the block addresses for each page of the file.

While the invention has been shown and described with reference to a particular embodiment, it should
be appreciated by those persons skilled in the art that changes and modifications may be made without
departing from the spirit of the invention or the scope of the appended claims.

EE

Images

[view Cart

»

[Add in Cart}

[Hit List HPreuiaus [Next][Top j

[Home ” Quick W[Advanced[PatNumH H_eng

http://patft.uspto.gov/netacgi/nph-Parser?Sect1 =PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

