509

e e

United States Patent: 4,742,447 Page 1 of 25

USPTO PATENT FULL-TEXT AND IMAGE DATABASE

(“ome oot) asuanca) o)

[Hit List]gtgg_lg_u_s_ Battom]
[View Cart],'.n.dd to Cart]
Images
(27 o£27)
United States Patent | 4,742,447
Duvall, et al. : May 3, 1988

~ Method to control I/O accesses in a multi-tasking virtual memory virtual machine type data
processing system

Abstract

A method for accessing information in a page segmented virtual memory data processing system in

.. which virtual machines running UNIX type operating systems are concurrently established, and in

" which a memory manager controls the transfer of information between primary and secondary storage
devices in response to the occurrence of page faults. The method establishes a plurality of data structures
in a dynamic manner in response to a Supervisor call to "map" a file. The mapping process assigns a
new segment of virtual memory to the mapped file and correlates, in one data structure, the virtual
address of each page of data in the new segment to a disk file address where that page is actually stored.
A UNIX system call by an application program for a specific virtual page is handled by the page fault

_ hanger, and not the UNIX kernel, since the application can supply the real address of the page on the
disk file from the data structure that was created by the mapped page range Supervisor call. Simple load
‘and store type of instructions are employed for the data transfer, which avoids much of the overhead that
normally accompanies conventional UNIX read and write system calls to the storage subsystem.

Inventors: Duvall; Keith E. (Georgetown, TX); Hooten; Anthony D. (Round Rock, TX)
. Assignee: International Business Machines Corporation (Armonk, NY)
~ Appl. No.: 819458

Filed: January 16, 1986

Current U.S. Class: 718/1; 711/100
Intern'l Class: GOGF 013/00; GO6F 012/08

Field of Search: 364/200 MS File,900 MS File,300

References Cited [Referenced By]

U.S. Patent Documents
4456954 Jun., 1984 Bullions, III et al. 364/200.

: http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PT02&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 4,742,447 Page 2 of 25

- 4481583 Nov., 1984 Mueller 364/200.
4519032 May., 1985 Mendell 364/200.
4528624 Jul, 1985 Kamionka et al. 364/200.
4533996 Aug., 1985 Hartung et al. 364/200.
4558413 ~ Dec., 1985 Schmidt et al. 364/200.
4564903 Jan., 1986 Guyette et al. 364/200.
4571674 Feb., 1986 Hartung 364/200.
4577274 Mar., 1986 Ho et al. 364/200.
4636946 Jan., 1987 Hartung et al. 364/200.

- 4660130 Mar., 1987 Bartley et al. 364/200.

. Primary Examiner: Zache; Raulfe B.
~ Assistant Examiner: Harrell, Robert B.
Attorney, Agent or Firm: Cummins; Richard E.

Claims

What is claimed is:
' 1. A method for a page segmented virtual memory data processing system having
. (1) 2 main memory including |
a first plurality of byte addressable storage locations each of which functions to store one byte of data,
B (2) a secondary storage device including

* a second plurality of block addressable storage locations each of which functions to store at least one
- virtual page of data,

(3) a resource manager for creating at least one machine having a UNIX type Operating System {UOS}
program which includes,

(a) conventional Unix commands for opening and creating new Unix files,

(b) /O commands for transferring Unix file data between said device and said main memory, said I/O
commands each including,

- (i) a file descriptor parameter,
(ii) a buffer pointer parameter, and

. (iii) a parameter specifying the number of bytes of data that is to be transferred by each of said
commands,

(c) means for storing a Unix offset pointer which designates a byte location in said device from which or
to which said file data is transferred by each of said O commands, and

hitp://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 4,742,447 Page 3 of 25

(d) I/O subroutines which are run when said I/O commands are executed,

(4) an application program which includes conventional Unix I/O system calls to said I/O commands,
and

R (5) a memory manager program having,

(a) Load and Store type of instructions each employing a virtual page address for transferring a page of
.-data between said device and said main memory,

(b) a pageable External Page Table {XPT} for relating each said virtual page address to a different one
of said block addressable locations,

.- (c) a non-pageable Internal Page Table {IPT} for relating virtual page addresses to byte addressable
locations in said device,

(d) a page fault handling mechanism for resolving a page fault that occurs as a result of said application
program executing an instruction involving a virtual page which is not currently stored in said main
memory, said mechanism causing said one involved virtual page to be transferred to said device by
referencing said XPT to relate said involved virtual page address to a block address where said page is
stored,

-said method causing said data transfers defined in said I/O system 'calls to be made under the control of
said memory manager and said page fault handling mechanism, rather than said I/O subroutines of said
UOS, said method comprising the steps of,

(A) creating a new instruction for said operating system which functions to map a specified Unix file
stored in said device to new virtual page addresses in another segment of said virtual memory so as to
relate the newly assigned virtual page addresses in said another segment to said corresponding block
address in said device,

(B) mapping said specified Unix file to assign said new virtual page addresses in said another segment

- by executing said new instruction, including the steps of;

(a) establishing a first data structure for storing said map, said first data structure having an entry for

~ each active page of said specified Unix file, each entry including a first field which stores said block
address of one said active page and a second field which stores one of said new virtual page addresses in
said another segment,

(b) assigning a virtual address to said first data structure from a predetermined segment of said virtual

. memory,

(c) storing said first data structure in said device, and

(C) dynamically generating another virtual page address within the address range of said another
segment during execution of each said I/O commands by translating at least one of said command
parameters and said offset point for said specified file to said another virtual page address which is then
employed with said first data structure by said memory manager and fault handling mechanism to
transfer the virtual pages containing said file data specified by at least one of said parameters, between
said main memory and said storage device.

http:/fpatft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

IR

[P e e I . Ry,

~ United States Patent: 4,742,447 Page 4 of 25

- 2. A method for a page segmented virtual memory data processing system having

(1) a main memory including

~ a first plurality of byte addressable storage locations each of which functions to store one byte of data, |
(2) a secondary storage device including

" a second plurality of block addressable storage locations sach of which functions to store at least one &
virtual page of data,

(3) a resource manager for creating at least one machine having a UNIX type Operating System {UOS}
" program which includes,

N (a) conventional Unix commands for opening and creating new Unix files,

(b) a Read command for transferring Unix file data from said device to said main memory, said Read B
- command including, :

(1) a file descriptor parameter,

(ii) a buffer pointer parameter, and

(iii) a parameter specifying the number of bytes of data
that s to be transferred by said command,

(c) means for storing a Unix offset pointer which designates a byte location in said device from which
said file data is transferred by the next said Read command, and

" (d) a Read subroutine which is run when said Read command is executed,

(4) an application program which includes a conventional Unix Read system call to said Read command, ‘ *
and é

(5) a memory manager program having,

(a) a Load type of instruction employing a virtual page address for transferring a page of data from said
device to said main memory,

(b) a pageable External Page Table {XPT} for relating each said virtual page address to a different one
‘of said block addressable locations, B

(c) a non-pageable Internal Page Table {IPT} for relating virtual page addresses to byte addressable
locations in said device,

(d) a page fault handling mechanism for resolving a page fault that occurs as a result of said application
program executing an instruction involving a virtual page which is not currently stored in said main
memory, said mechanism causing said one involved virtual page to be transferred to said device by
referencing said XPT to relate said involved virtual page address to a block address where said page is

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 4,742,447 Page 5 of 25

stored,

said method causing each said data transfer defined in each said Read system call to be made under the
control of said memory manager and said page fault handling mechanism, rather than said Read
~ subroutine of said UOS, said method comprising the steps of,

" (A) creating a new instruction for said operating system which functions to map a specified Unix file

stored in said device to new virtual page addresses in another segment of said virtual memory so as to
relate the newly assigned virtual page addresses in said another segment to said corresponding block 5
address in said device,

(B) mapping said specified Unix file to assign said new virtual page addresses in said another segment
by executing said new instruction, including the steps of;,

* . (a) establishing a first data structure for storing said map, said first data structure having an entry for

each active page of said specified Unix file, each entry including a first field which stores said block
address of one said active page and a second field which stores one of said virtual page addresses in said |
another segment,

(b) assigning a virtual address to said first data structure from a predetermined segment of said virtual
memory,

(c) storing said first data structure in said device, and

* (C) dynamically generating another virtual page address within the address range of said another
segment during execution of each said Read command by translating at least one of said command
parameters and said offset pointer for said specified file to said another virtual page address which is
then employed with said first data structure by said memory manager and fauit handling mechanism to
transfer the virtual pages containing said file data specified by at least one of said command parameters
from said device to said main memory.

3. A method for a page segmented virtual memory data processing system having

(1) 2 main memory including

a first plurality of byte addressable storage locations each of which functions to store one byte of data,
(2) a secondary storage device including

a second plurality of block addressable storage locations each of which functions to store at least one
virtual page of data,

(3) a resource manager for creating at least one machine having a UNIX type Operating System {UOS}
program which includes, :

(a) conventional Unix commands for opening and creating new Unix files,

(b) 2 Write command for transferring Unix file data from said main memory to said device, said Write
command including,

(i) a file descriptor parameter,

. http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 4,742,447 Page 6 of 25

(ii) a buffer pointer parameter, and
(1ii) a parameter specifying the number of bytes of data that is to be transferred by said command,

(c) means for storing a Unix offset pointer which designates a byte location in said device to which said
file dat ais transferred by the next said Write command, and '

~ (d) a Write subroutine which is run when said Write command is executed,

(4) an application program which includes conventional Unix Write system calls to said Write
_ command, and

(5) a memory manager program having,

(2) a Store type of instruction employing a virtual page address for transferring a page of data from said
main memory to said device, ,

(b) a pageable External Page Table {XPT} for relating each said virtual page address to a different one
of said block addressable locations,

(c) a non-pageable Internal Page Table {IPT} for relating virtual page addresses to byte addressable
locations in said device,

- (d) a page fault handling mechanism for resolving a page fault that occurs as a result of said application
program executing an instruction involving a virtual page which is not currently stored in said main
memory, said mechanism causing said one involved virtual page to be transferred to said device by
referencing said XPT to relate said involved virtual page address to a block address where said page is
stored,

' said method causing each said data transfer defined in each said Write system call to be made under the
control of said memory manager and said page fault handling mechanism, rather than said Write
subroutine of said UOS, said method comprising the steps of,

(A) creating a new instruction for said operating system which functions to map a specified Unix file
stored in said device to new virtual page addresses in another segment of said virtual memory so as to

- relate the newly assigned virtual page addresses in said another segment to said corresponding block

address in said device,

(B) mapping said specified Unix file to assign said new virtual page addresses in said another segment
by executing said new instruction, including the steps of;

~ '(a) establishing a first data structure for storing said map, said first data structure having an entry for
each active page of said specified Unix file, each entry including a first field which stores said block
address of one said active page and a second field which stores one of said new virtual page addresses in
said another segment,

(b) assigning a virtual address to said first data structure from a predetermined segment of said virtual
memory,

(c) storing said first data structure in said device, and

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PT02&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 4,742,447 Page 7 of 25

*(C) dynamically generating another virtual page address within the address range of said another
segment during execution of each said Write command by translating at least one.of said command
parameters and said offset pointer for said specified file to said another virtual page address which is
then employed with said IPT and said first data structure by said memory manager and fault handling
mechanism to transfer the virtual pages containing said file data specified by at least one of said
parameters from said main memory to said device.

-4. The method recited in claim 2 in which step of translating at least one of said read command
parameters and said offset pointer includes the step of determining the number of virtual pages that
would be required to store the data from the beginning of said specified file up to said byte location
designated by said offset pointer.

o

5. The method recited in claim 4 in in which each said virtual page stores N bytes of data and said step
of determining includes the step of effectively dividing the decimal value of said offset pointer by N to
produce a Quotient {Q} and a Remainder {R} which indicate that the byte position of said offset pointer
is located in the Q +1 virtual page of said another segment.

6. The method recited in claim 5 in which said step of translating further includes another step of
determining if all the data specified to be transferred by said read command can be allocated to said Q+1
virtual page, said another step further including the step of effectively comparing the decimal value of
said remainder R to the decimal value of the number of bytes to be transferred specified by said Read
command.

7. The method recited in claim 6 furhter including the step of supplying said memory manager with said
dynamically generated virtual page address in said another segment.

8. The method recited in claim 7 further including the step of said memory manager checking if said
virtual page specified by said dynamically generated virtual page address is currently in said main
memory.

9. The method recited in claim 8 in which said main memory comprises a plurality of addressable page

_frames each of which has N byte positions for storing one virtual page of N data bytes, and said step of
said memory manager checking includes the step of inspecting said IPT to determine if said dynamically
generated virtual page address is in any entry of said IPT.

10. The method recited in claim 9 further including the step of resolving said page fault with said page
- faulting mechanism when said step of inspecting concludes that said dynamically generated virtual page
address in not in said IPT.

11. The method recited in claim 10 in which said step of resolving further includes the step of said page
~ faulting mechanism looking at said first data structure to determine the block address that is stored in the 3
- first field of the entry whose second field is storing said dynamically generated virtual page address. 5

12. The method recited in claim 11 further including the step of said page handling mechanism
transferring the block of data stored at said block address determined in said step of looking from said
device to an unused page frame of said main memory, and updating said IPT with the byte address of
said unused page frame.

13. The method recited in claim 2 further including the step of establishing a Map Page Range {MPR}
data structure for storing information relative to said map created by said mapping step, including a

A http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PT02&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 4,742,447 Page 8 of 25

segment ID field for storing the ID of the virtual segment to which said file is mapped.

14. The method recited in claim 13 in which said UOS includes an Inode data structure for storing the
File Descriptor assigned to a file, said method further includes the step of establishing in said Inode data
structure a field for storing an indication if said file is currently mapped, and a field for storing a pointer
to said MPR data structure.

15. The method recited in claim 14 in which said step of mapping further includes the step of updating
said Inode data structure to provide an map indication that said file is currently mapped at the conclusion
of the mapping step.

16. The method recited in claim 15 further including the step of checking said map indication in said
Inode data structure during execution of said Read command to determine if said step of mapping can be
skipped and said method can proceed directly to said step of translating.

- 17. The method recited in claim 16 further including the step of skipping said step of mapping and
proceeding directly to said translating step if said step of checking said map indication, indicates that
said file is currently mapped.

Description

TECHNICAL FIELD

This invention relates in general to a multi-tasking virtual memory data processing system which
employs the UNIX* type operating system and, in particular, to an improved method in which simple
load and store instructions of the system process are employed for the paging of data between the
primary and secondary storage devices of the system.

*UNIX is a trademark of A.T.& T.
CROSS-REFERENCED APPLICATIONS

U.S. application, Ser. No. 06/819,459, allowed on Sept. 9, 1987, filed concurrently herewith in the name
of O'Quin, et al, entitled "Method to Control Paging Sub-system Processing in a virtual Memory Data
Processing System During Execution of Critical Code Sections," and assigned to the same assignee as
.this application, discloses and claims a method for logically serializing system events that cause page
‘processing in a virtnal memory so as to maintain the integrity of system data structures that record the
. current status of virtual pages and page frames.

U.S. Application, Ser. No. 06/819,455, filed concurrently herewith in the name of Duvall, et al, entitled

. "Method to Share Copy.sub.-- On.sub.-- Write Segment for Mapped Files," and assigned to the same

assignee as this application, discloses and claims a method for sharing a "Copy.sub.13 On.sub.13 Write"
segment in a virtual memory data processing system that is capable of creating virtual machines which
have an operating system of the UNIX type.

U.S. Application, Ser. No. 819,456, filed concurrently herewith in the name of Duvall, ¢t al, entitled
"Method to Create a Mapped File Write Extension in a Virtual Memory Data Processing System," and
assigned to the same assignee as this application, discloses and claims a method for creating an
extension of the segment that is employed for storing a mapped file that has been created in accordance

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

R United States Patent: 4,742,447 Page 9 of 25

with the system described in the present application.
DESCRIPTION OF THE PRIOR ART

_The prior art discloses a number of data processing systems which are capable of running a UNIX type
operating system. U.S. Pat. Nos. 4,536,837; 4,470,115; 4,104,718 and 4,047,244 are representative of
" the patents which describe UNIX based data processing systems.

In addition, there are a number of publications and manuals which describe, at various levels, the
architecture and operation of the UNIX operating system and the various versions, releases, and look-
alike derivatives of the basic UNIX system. The following are a representative sample of such
publications.

1. "A Tour Through the UNIX File System," James Joyce, October 1983, pp 170-182, Byte
Publications, Inc.

2. "UNIX as an Application Environment," Mark Krieger, et al, October 1983, pp 209-214, Byte
Publications, Inc.

3. "The UNIX System Calls,” Brian W. Kermghan et al, 1984, pp 203-231, The Unix Programming
Environment.

4. "UNIX Time-Sharing: A Retrospective,” D. M. Ritchie, January 1977, pp 1947-1969, The Bell
System Technical Journal, July-August 1978.

5. "UNIX Variant Opens a Path to Managing Multiprocessor Systems," Paul Jackson, July 1983, pp
118-124, Electronics.

6. "UNIX - Berkeley 4.2 Gives UNIX Operating System Network Support,"0 Bill Joy, July 1983, pp
114-118, Electronics.

- 7. "The UNIX Tutorial, Part 1," David Fiedler, August 1983, pp 186-219, Byte Publications, Inc.
8. "The UNIX Tutorial, Part 2," David Fiedler, September 1983, pp 257-278, Byte Publications, Inc.
UNIX FILES

The fundamental structure that the UNIX operating system uses to store information is the file. A file is
a sequence of bytes, each byte being typically 8 bits long, and is equivalent to a character. UNIX keeps
track of files internally by assigning each files a unique identifying number. These numbers, called
mode numbers, are used only within the UNIX operating system kernal itself. While UNIX uses inode
number to refer to files, it allows users to identify each file by a user-assigned name. A file name can be
any sequence containing from one to fourteen characters.

There are three types of files in the UNIX file system: (1) ordinary files, which may be executable
programs, text, or other types of data used as input or produced as output from some operation, (2)
directory files, which contain lists of files, and (3) special files, which provide a standard method of
accessing I/0 devices.

UNIX DIRECTORIES

 http://patfi.uspto. gov/netacgi/nph—Parser?Sect1=PT02&Seqt2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 4,742,447 Page 10 of 25

UNIX provides users a way of organizing files. Files may be grouped into directories. Internally, 2
-directory is a file which contains the names of ordinary files and other directories, and their

- corresponding inode numbers. Given the name of a file, UNIX looks in the file's directory and obtains
the corresponding inode number for the file. With this inode number, UNIX can examine other internal
tables to determine where the file is stored and to make it accessible to the user. UNIX directories
themselves have names, each of which may also contain fourteen characters.

UNIX HIERARCHICAL FILE SYSTEM

. Just as directories provide a means for users to group files, UNIX supports the grouping of directories
into a hierarchical file system. At the very top of a hierarchy is a directory. It may contain the names of
individual files and the names of other directories. These, in turn, may contain the names of individual
files and still other directories, and so on. A hierarchy of files is the result. The UNIX file hierarchy

. resembles an upside-down tree, with its root at the top. The various directories branch out until they

“finally trace a path to the individual files, which correspond to the tree's leaves. The UNIX file system is
described as "treestructured," with the single directory at the very top of the hierarchy called the root
directory. All the files that can be reached by tracing a path down through the directory hierarchy from
the root directory constitute the file system.

UNIX FILE SYSTEM ORGANIZATION

UNIX maintains a great deal of information about the files that it manages. For each file, the file system
keeps track of the file's size, location, ownership, security, type, creation time, modification time, and

. access time. All of this information is maintained automatically by the file system as the files are created
and used. UNIX file systems reside on mass storage devices such as disk files. These disk files may use
fixed or removable type media which may be rigid or flexible. UNIX organizes a disk as a sequence of
blocks, which compose the file system. These blocks are usually either 512 or 2048 bytes long. The
contents of a file are stored in one or more blocks, which may be widely scattered on the disk.

An ordinary file is addressed through the inode structure. Each inode is addressed by an index contained
in an i-list. The i-list is generated based on the size of the file system, with larger file systems generally
implying more files, and thus larger i-lists. Each inode contains thirteen 4-byte disk address elements.

_ The direct inode can contain up to ten block addresses. If the file is larger than this, then the eleventh
address points to the first level indirect block. Address 12 and address 13 are used for second level and
third level indirect blocks, respectively, with the indirect addressing chain before the first data block
growing by one level as each new address slot in the direct inode is required.

UNIX FILE SYSTEM ACCESS VIA READ/WRITE SYSTEM CALLS

All input and output is done by reading and writing files, because all peripheral devices, even terminals,
are files in the file system. In the most general case, before reading and writing a file, it is necessary to
inform the system of your intent to do so, by way of opening the file. In order to write to a file, it may
also be necessary to create it. When a file is opened or created (by way of the “open’ or “create” system
calls), the system checks for the right to do so, and if all is well, returns a non-negative integer called a
file descriptor. Whenever /O is to be done on this file, the file descriptor is used instead of the name to
identify the file. This open file descriptor has associated with it a file table entry kept in the "process”
space of the user who has opened the file. In UNIX terminology, the term "process" is used
interchangeably with a program that is being executed. The file table entry contains information about
an open file, including an inode pointer for the file, and the file offset pointer for the file, which defines
the current position to be read or written in the file. All information about an open file is maintained by
the system.

http://pat_fc.uspto.gov/netacgi/nph—Parser?Sectl=PT02&Sect2=I-HTOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 4,742,447 Page 11 of 25

" 'In conventional UNIX, all input and output is done by two system calls, ‘read” and "write,” which are

accessed from programs having functions of the same name. For both system calls, the first argument is
a file descriptor. The second argument is a pointer to a buffer in main memory that serves as the data
source or destination. The third argument is the number of bytes to be transferred. Each ‘read” or “write’
system call counts the number of bytes transferred. On reading, the number of bytes returned may be
less than the number requested, because fewer than the number requested remained to be read. A return
value of zero implies end of file, a return value or -1 indicates an error of some sort. For writing, the
value returned is the number of bytes actually written. An error has occurred if this isn't equal to the
number supposed to be written.

The ‘read’ and “write' system calls' parameters may be manipulated by the application program which is
accessing the file. The application must therefore be sensitive to and take advantage of the multi-level
store characteristics inherent in a standard system memory hierarchy. It is advantageous, from the
application perspective, if the system memory components can be viewed as a single level hierarchy. If

. this were properly done, the application could dispense with most of the I/O overhead.

“The prior art also discloses a number of multi-tasking virtual memory data processing systems in which
the system architecture is based on establishing a different "virtual machine"” nominal for each of the
applications that are run concurrently on the system. In such systems, the operating system executes in a
virtual machine which is established by a Virtual Resource Manager. The Virtual Resource Manager
(VRM) is a group of programs or processes that extend the system's processor or microprocessor and the
system's memory management unit, to provide a high level port for the operating system in a virtual
machine environment.

A software interface between the program and the operating system and the programs of the Virtual
Resource Manager is established, and referred to as the Virtual Machine Interface (VMI). A virtual
machine, therefore, has a very high-level physical machine-like interface.

In most prior art systems which operate in a multi-tasking virtual machine environment, the Virtual
Resource Manager provides the virtual machine with virtual memory that is transferred to the virtual
machine. Various arrangement for managing the address space of the virtual memory are used by these
prior art virtual memory systems. In one well-known technique, referred to as "Paged Segmentation,”

- the entire address range of the virtual memory is divided into equal-sized segments. The virtual address,

“ therefore, comprises two portions; a segment ID and an offset. For example, the virtual address space
comprises 2%40, or 2 to the exponent 40 address locations, a virtual address consisting of 40 bits is
required. If a segment identifier of 12 bits and an offset of 28 bits is used for the format of the virtual
address, then 2*(12) or 4,096 separate segments are provided, with each segment having 2*(28) or
256.times.10*(9) separate address locations. If it is assumed that each address location can store one
page of data, and one page of data holds 2048 (2 K) bytes, then the capacity of the virtual memory is 1
terrabyte (2*[43]).

. These prior art systems also employ different arrangements for generating the virtual address, depending
on the architecture of the system processor. One technique employed by processors which have an
effective real memory address of 32 bits is to employ a predetermined number "n" of the high order
address bits to select one out of 2*(n) segment ID registers, each of which is capable of storing a
segment ID having the required length. In the previous example of the 40 bit virtual address, the
segment register would have 12 stages for storing a 12 bit segment ID, which is concatenated with the
remaining 28 bits of the processor's effective real address, which provides the offset portion of the 40 bit
-virtual address.

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PT02&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

LRSI

United States Patent: 4,742,447 Page 12 of 25

A virtnal machine that is created by the VRM generally will define a number of memory segments with
which it will be working at any one time. To access data in one of the segment, the virtual machine loads
a segments identifier into one of the 16 segment registers, using the previous example of the addressing
technique. Segments that are selected by the virtual machine are usually private, unless the virtual
machine grants access to other virtual machines. Access to segments can be controlied by the operating
system of the virtual machine.

A virtual memory system generally employs a page faulting mechanism which functions to control the

paging of data between the system memory and the disk files. These storage devices are often referred to

- ‘as primary and secondary storage, or front and back store devices. The paging function is, to some
extent, similar to I/O operations run by the application program. So much so, that in some simple paging
systems, a conflict arises between file I/O operations which are under control of the application program
and the operating system, and paging operations. For example, a file device driver may read disc data
into a memory buffer, then the paging system, acting independently, may write the newly buffered data
- back out to the disk. When there is no coordination of effort between the file /O subsystem and the

~ paging I/O subsystem, potential duplication exists with program loading, in that the loader will read a
“program from the library section of the back store to the front store, while the paging I/O function will
return the program to a different disk address during a page out operation.

Is is, therefore, important that the data processing system reflect a degree of coordination between the
two similar functions, and various arrangements have been disclosed in the prior art for achieving this
coordination. However, the required coordination does have an impact on system performance, and prior
art coordination techniques become quite unmanageable when an attempt is made to implement them in
a multi-tasking, multi-user virtual memory UNIX-type environment employing a very large virtual
memory.

SUMMARY OF INVENTION

In accordance with the method of the present invention, a virtual machine environment is established in
which all file I/O operations can be assigned to the page faulting mechanism of the memory manager
unit which is part of the Virtual Resource Manager that establishes the virtual machine. The UNIX read
and write system calls to UNIX-structured files is maintained, as are the conventional data structures
employed by the page faulting mechanism. Structures such as the External Page Table, for recording
correspondence between addresses in virtual memory and real addresses and the real address location of
data on the disk file are maintained, as is the Inverted Page Table which correlates virtual addresses of
pages in system memory, with system memory real addresses.

Usually, the data in a segment of virtual memory that has been created as a result of an application
program being run, does not persist beyond the execution of the program.

In the new method, the Virtual Memory Manager allows the data contained within a segment to be
associated with files in the virtual machine's file system, thus allowing that data to exist after the
execution of a program. This association of file data to virtual pages is achieved through, what is
referred to hereinafter as, mapped files or mapping of files.

The map page range service that is established is provided to allow a virtual machine the ability to create
a one-level store environment for a subset, such as the mapping of an individual file. It should be noted
that generally most operating systems, such as the UNIX operating system, provide the ability for an
application program to access disk files through the conventional /O system call. On the other hand,
application programs generally do not have the ability independent of an operating system, to access
secondary storage files, such as disk drives. Application programs, on the other hand, are designed to

http://patfi.uspto.gov/netacgi/nph-Parser?Sect1=PT02&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

O

United States Patent: 4,742,447 Page 13 of 25

operate intimately with the microprocessor to address system memory by so-called load and store
" instructions.

A map page range service is provided to allow a virtual machine the ability to create a "one-level store"
environment for a subset such as mapping an individual file. This service is necessary, because neither
- the operating system executing in the virtual machine, nor the Virtual Resource Manager have the
capability of themselves to map a file. The virtual machine does not have access to the Virtual Memory
‘Manager's table and the Virtual Resource Manager is designed to be independent of the virtual
machine's file system structure. The map page range service provides the virtual machine the ability to
tell the VMM the relationship between a logical entity, such as a file, and its location on the disk.

The method further involves providing an enhanced function to the UNIX operating system which
selectively maps the disk blocks of a file to a different memory segment. The mapping process
dynamically defines a range of blocks (one block contains one page equal to 2K), that have been
allocated on the disk storage device for a given file. The map is stored in real memory, in space assigned
to the virtual machine.

Once this mapping is achieved, a program running in a virtual machine can execute machine level data
access operations without regard to the physical location of the data at the time of access. If the data is
not in active memory at the time of reference, then a page fault is induced. The underlying paging
system resolves the page fault by referencing the address location of the fault, and if the data is actually
allocated on a secondary storage device, then this address location will correspond to a physical location
on the secondary device which is defined by the page mapping for that segment address. Each virtaal
address in the segment range has, at most, one physical data location on the secondary device.
Conversely, each physical data location on the secondary device may be referenced by 2,048 separate
segment addresses. The logical and physical extent of the relationship between a page and a block of
data is what defines the above relationship. The address specification then may be seen as discrete to the
byte level, but always rounded down to the first 2K boundary for the actual secondary device location.

The enhancement to the "kernel” of the operating system implements the mapped page range support in
the form of "mapped executable." When a program is loaded, the kernel maps the program's disk blocks
to distinct virtual memory text and data segments. In UNIX terminology, "text" is the part of the
program that is fixed, whereas variable data such as tables and constants are referred to as "data." The
kernel performs very little physical I/0 to load the program. Only the program file head is read by the
kernel. All remaining disk I/O is demand paged as the program is executed. This results in a significant
performance increase for large programs which, without map page range support, would have to be read
_entirely into memory and possibly paged out by the paging supervisor.

This map file support consists of a system call interface to the map page range facilities. The prior art
UNIX system call "shmat" has been modified to include a flag bit which may be specified in the shmat

-system call in accordance with the present method. When the SHM.sub.-- MAP flag is specified, the
data file associated with the specified open file descriptor is mapped to the address space of the calling
process. When the file has been successfully mapped, the segment start address of the map file is
returned. The data file to be mapped must be a regular file residing on the secondary storage device.
Optional flags may be supplied with the "shmat" system call to specify how the file is to be mapped. The
different way in which the files are to be mapped correspond generally to those available in the basic
UNIX system, namely read-only, write-only, copy-on-write (SHM.sub.-- COPY).

All processes that map the same file, read-only or read-write, map to the same virtual memory segment.

This segment remains mapped until the last process mapping the file closes it. All processes that map
the same file copy-on-write, map to the same copy-on-write ssgment. Changes to the copy-on-write

hitp://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 4,742,447 Page 14 of 25

. segment do not affect the contents of the file resident in the file system until specifically requested to do

'so by the user, by issuing a special command referred to as "fsync." If a process copy-on-write mapping
for a file and the copy-on-write segment does not yet exist, then it is created, and that segment is
maintained for sharing until the last process attached to it, detaches it with a close system call, at which
time the segment is destroyed. The next request for a copy-on-write mapping for the same file causes a
new segment to be created for the file.

A file descriptor can be used to map the corresponding file only once. A file may be multiply mapped by
“using multiple file descriptors (resulting from multiple "open” system calls), however, a file cannot be
mapped both read-write and copy-on-write by one or more users at the same time.

When a file is mapped onto a segment, the file may be referenced directly by accessing the segment by
load and store instructions, as previously indicated. The virtual memory paging system automatically
takes care of the physical I/O. However, references beyond the end of the file cause the file to be
extended in increments of the page size, i.e., 2K. A general system flow for a mapped file reference is
‘described for the following scenario. In this scenario, the application atiempts to reference a data area in
a file which is not currently in memory. This reference causes a memory faunlt, and the process which is
running the application is placed in a wait stage. The Virtual Resource Manager allocates a page in
memory for the new data. It then determines what physical address the data resides at on disk, from the
file map created earlier for the file by the map file services function. A start /O operation is initiated to
disk, the disk adapter primes the memory location with the 2K byte data block from the file, and an
interrupt is issued to the virtual machine, i.e., the UNIX kernel, which does a context switch to permit
the operating system to take control. The process is made dispatchable, and the operating system kernel
then returns control to the Virtual Resource Manager, which then re-dispatches the process.

Besides the system call for mapping a file, the mapped file function also permits the other UNIX-type
function calls for files to be employed with the mapped file segment.

It is therefore an object of the present invention to provide an improved method for controlling file I/O
operations in a virtual machine, virtual memory type data processing which employs a UNIX-type
operating system.

Another object of the present invention is to provide an improved method which permits an application
.program being run on a virtual machine having virtual memory, to address memory as a single-level
store, even though the storage subsystem comprises a separate front and back store type storage device.

A further object of the present invention is to provide an approved method for use with a virtual
machine, virtual memory, UNIX-based data processing system, in which the page fault mechanism of
the memory manager is employed to resolve page faults which result when the system memory is
addressed by load and store insturctions issued by the application program being run on the virtual
machine.

. Objects and advantages other than those mentioned above will become apparent from the following
description, when read in connection with the drawing.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a schematic illustration of a virtual memory system in which the method of the present
invention may be advantageously employed.

* FIG. 2 illustrates the interrelationship of the Virtual Resource Manage shown in FIG. 1 to the data

' http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 4,742,447 Page 15 of 25

processing system and a virtual machine.

FIG. 3 illustrates the virtual storage model for the system shown in FIG. 1.

FIG. 4 illustrates conceptually, the address translation fiunction of the system shown in FIG. 1.

FIG. 5 illustrates the interrelationships of some of the data structures employed in the system of FIG. 1

FIG. 6 illustrates the interrelationship of a number of data structures to the Virtual Resource Manager,
the virtual memory, and real memory.

FIG. 7ais a flow chart illustrating steps in the method of the present invention.

FIG. 7b is a continuation of the flow chart shown in FIG. 7a illustrating steps in the method of the
present invention. ‘

FIG. 7c is a flow chart illustrating steps in the map page range service.
DESCRIPTION OF THE PREFERRED EMBODIMENT

System Overview: FIG. 1 is a schematic illustration of a virtual memory system in which the method of
the present invention is employed. As shown in FIG. 1., the system comprises a hardware section 10 and
a software or programming section 11. Hardware section 10, as shown, comprises a processor function
12, a memory management function 13, a system memory function or RAM 14, system bus 15, an
Input/Output Channel Controller (IOCC) 16, and an Input/Output bus 21. The hardware section further
includes a group of I/O devices attached to the I/O bus 21 through the JOCC 16, including a disk storage
function 17, a display function 18, a co-processor function 19, and block 20, representing other /O
devices such as a keyboard or mouse-type device.

The program section of the system includes the application program 22 that is to be run on the system, a
group of application development programs 23, or tools to assist in developing new applications, an
operating system kernel 24, which, for example, may be an extension of the UNIX system V kernel, and
a Virtual Resource Manager program 25, which functions to permit a number of virtual machines to be

~ created, each of which is running a different operating system, but sharing the system resources. The
system may operate, therefore, in a multi-tasking, multi-user environment which is one of the main

. reasons for requiring a large virtual memory type storage system.

FIG. 2 illustrates the relationship of the Virtual Resources Manager 25 to the other components of the
system. As shown in FIG. 2, a virtual machine includes one or more application programs such as 22al14
22c¢ and at least one operating system 30. A virtual machine interface 31 is established between the
virtual machine and the VRM 25. A hardware interface 32 is also established between the VRM 25 and
. the hardware section 10. The VRM 25 supports virtual memory. It can be assumed, for purposes of
explanation, that the memory capabilities of the hardware shown in FIG. 1 includes a 24 bit address
space for system memory 14, which equates to a capacity of 16 megabytes for memory 14, and a 40 bit
address space for virtual memory, which equates to 1 terabyte of memory. A paged segmentation
technique is implemented for the Memory Management Unit 13, so that the total virtual address space is
divided into 4,096 memory segments, with each memory segment occupying 256 megabytes.

FIG. 3 illustrates the virtual storage model. The processor 12 provides a 32 bit effective address which is

. specified, for example, by the application program. The high order 4 bits of the 32 bit address functions
to select 1 of 16 segment registers which are located in the Memory Management Unit (MMU) 13. Bach

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 4,742,447 Page 16 of 25

segment register contains a 12 bit segment ID section, along with other special control-type bits. The 12
bit segment ID is concatenated with the remaining 28 bits of the initial effective address to provide the
40 bit virtual address for the system. The 40 bit virtual address is subsequently translated to a 24 bit real
address, which is used to address the system memory 14.

The MMU 13 utilizes a Translation Look-aside Buffer (TLB) to contain translations of the most recently
used virtual addresses. Hardware is used to automatically update TLB entries from main storage page
tables as new virtual addresses are presented to the TLBs for translation. FIG. 4 illustrates conceptually,
the TLB reload function.

The 40 bit virtual addresses are loaded into the TLB by looking them up in an Inverted Page Table
(IPT), as shown in FIG. 4. The table is "inverted" because it contains one entry for each real memory
page, rather than one per virtual page. Thus, a fixed portion of real memory is required for the IPT,
regardless of the number of processes or virtual segments supported. To translate an address, a hashing
function is applied to the virtual page number (high order part of the 40 bit virtual address, less the page
offset) to obtain an index to the Hash Anchor Table (HAT). Each HAT entry points to a chain of IPT

" entries with the same hash value. A linear search of the hash chain yields the IPT entry and, thus, the

real page number which corresponds to the original 40 bit virtual address. If no such entry is found, then

the virtual page has not been mapped into the system, and a page fault interrupt is taken.

The function of the Page Fault Handler (PFH) is to assign real memory to the referenced virtual page
and to perform the necessary I/O to transfer the requested data into the real memory. The system is, thus,
a demand paging type system.

‘When real memory becomes full, the PFH is also responsible for selecting which page of data is paged
out. The selection is done by a suitable algorithm such as a clock page replacement algorithm, where
pages are replaced based on when the page was last used or referenced. Pages are transferred out to disk
storage.

Virtual Memory Manager Data Structures: The characteristics of the Virtual Memory Manager data
stru¢tures will now be described.

Segment Table: The Segment Table (SIDTABLE) contains information describing the active segments.
The table has the following characteristics. The table is pinned in real memory and its size is

_predetermined. It must be word-aligned in memory, and the segment table must be altered in a paging
subsystem critical section.

External Page Table: The External Page Table (XPT) describes how a page is mapped to the disk. There

is one XPT entry for each defined page of virtual memory. The XPT entries for a segment are allocated

- as continuous entries when the segment is created. The XPT entries for a small segment, that is one that
is less than 1 megabyte, do not cross an XPT page boundary. The XPTs for a large segment, those larger

_than 1 megabyte, are aligned at the start of an XPT page. The XPT entries are allocated in units of 32
entries which will map 65,536 bytes (64K) of virtual memory. Each entry requires 4 bytes. The table has M
the following characteristics. Only XPT root entries must be pinned into memory. Its size is :
predetermined, and it must be word-aligned. The virtual page number is the index into the XPT table.
The XPT must be altered only in a Paging Subsystem critical section.

Inverted Page Table: The Inverted Page Table (IPT) describes the relationship between virtual addresses
and real addresses, as discussed previously. The IPT consists of two arrays. The first one is primarily
defined by the memory management unit, and contains the information that controls the translation
function. The second array contains the Paging Subsystem page state information, used to control page

http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PT02&Sect2=HITOFF &p=1 &u=/netaht... 12/20/2005

United States Patent: 4,742,447 Page 17 of 25

fault processing. This array has the following characteristics. It is pinned, and its size is determined by
the real memory size which is set at the Initial Program Load Time (IPL). It is aligned according to real
memory size. The real page number is the index into the IPT. Like the previous structures, it must be
altered in a Paging Subsystem critical section. Each real page frame has an entry in the IPT. All pages

" are on one of three lists.

~ There is one main list for each valid segment. It is doubly linked and anchored in the segment control
block. This list links together all of the page frames assigned to the segment with a valid virtual address,
and for which there may be a valid Translation Look-aside Buffer (TLB) entry.

There is one system-wide free list that links together the page frames that may be reassigned. This
doubly linked, circular list is anchored in the IPT entry for page one. Pages on this list do not have a

~valid TLB entry, and accesses to them will always result in a page fault. Pages may be on both the main

. list and free list. This is done so that the pages may be released without searching the free list. Unnamed
" (unhashsed) pages are put at the head of the list, and named (hashed) pages are put at the tail.

There is one system-wide I/O list that links together all of the pages currently being read or written to
the disk. This doubly linked, circular list is anchored in the IPT entry for page two. Pages on this list do
not have a valid TLB entry, and accesses to them will also result in a page fault. There must be only one
page /O list to ensure that I/O is processed first-in, first-out by block, even if non-first-in, first-out disk
scheduling is performed. :

Notification Control Block: A Notification Control Block (NCB) contains the information required to
notify a virtual machine of the completion of an asychronous paging request. The asynchronous request
can be either a purge page range Service Call (SVC), or a page fault when asynchronous
acknowledgement is allowed. An NCB is a self-describing control block in the system control block
area. Its identifier field can be used to differentiate it from other types of control blocks in the system
control block area. This is required since NCBs are queued on the same list as Process Control Blocks
(PCBs). An NCB is pinned and allocated in the system control block area when needed. Like the
previous structures, it must be altered in a Paging Subsystem critical section. An NCB is only allocated
when the Page Fault Handler is performing a function on behalf of a process and, therefore, will not
cause the system to abnormally terminate due to insufficient system control blocks.

" Page Fault Wait Lists: The Virtual Memory Manager can place a process either internal or virtual
machine on one of three circular wait lists.

~ There is one page I/O wait list for each frame in the system. A page's I/O wait list is anchored in the
page's IPT entry and links together the Process Control Blocks (PCBs) of the processes synchronously
waiting for 1/O to complete to the page, and the NCBs of the processes asynchronously waiting for /O
completion notification, A process is placed in a page's I/O wait list when it reclaims the page with I/O
in progress or it initiates a page in I/O as a result of a page fault.

There is one global system free page frame wait list. It links together the PCBs or NCBs for the
processes that are waiting for a free page frame. This list is processed first-in, first-out. A process is
placed on this list when it requires a free page frame and there is not one available. The processes' PCB
is enqueued on the list for synchronous waits and an NCB is enqueued on the list for asynchronous
waits. Lastly, there is one global system page I/O wait list. It links together the PCBs or NCBs for the
processes that are waiting for all page out I/O less than or equal to a specific page I/O level. This list is
sorted by a page I/O level. A process is placed on this list by several of the Virtual Memory Manager
service calls to ensure that the contents of the disk match the contents in memory. A PCB is enqueued
on the Iist for synchronous requests or an NCB is enqueued on the list for asynchronous requests. Note

 hitp://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

DS it e

‘United States Patent: 4,742,447 Page 18 of 25

that with non-first-in, first-out disk scheduling, the page I/O level may result in the process waiting
longer than is required.

Paging Mini-Disk Table: The paging mini-disk table controls the translation of Virtual Memory
Manager slot numbers into the minidisk I/O Device Number (IODN) and logical block number. The
pumber of entries in this table define the maximum number of mini-disks that the Virtual Memory
Manager can perform paging operations to. This array has the following characteristics. It is pinned, its
size is predetermined, and it is word-aligned. The paging space mini-disk entries are allocated at system
initialization and must be the first entry/entries in the table. Mapped page range service calls allocate an
entry for mapped mini-disks. The most significant bits of the disk address are the index into this table.
As in the previous data structures, it must only be altered in a Virtual Memory Manager critical section.

Disk Allocation Bit Map: The Virtual Memory Manager maintains a bit map for each paging space
mini-disk. Each bit indictes if its page is allocated or free. Bad slots are marked as allocated when the

- mini-disk is opened at system initialization. This array has the following characteristics. It is not

‘pageable, the paging space is allocated at page out time, the least significant bits of the disk address are
the index into this array, and as with the previous structures, it must be altered only in a Virtual Memory
Manager critical section.

Paging Device Extensions: One Paging Device Extension (PDX) exists for each paging space that the
Virtual Memory Manager supports. A PDX is an extension for a paging space entry in the paging mini-
disk table. The Virtual Memory Manager manages paging space and the PDX is what is used to guide it
in that management. The attributes of the PDX are; it is pinned and it is allocated from the system
control block area at system initialization, It is linked together in a list and anchored by a global pointer,
"and as previous structures, it must be altered only in a Virtual Memory Manager critical section. PDXs
are not dynamically allocated. System initialization allocates all PDXs and initializes them.

Page Fault Processing: Synchronous page fault processing is the traditional type of page fault
processing. In this operation, the faulting process is forced to wait until the I/0 required to resolve the
page fault is complete. The Virtual Memory Manager restarts the process at the completion of each I/O
~ request. When redispatched, the process will either page fault, in which case additional I/O will be
scheduled to resolve the fault, or will not page virtual machine receives a "page fault cleared" machine
" communication interrupt so that it can put its faulting task back on its ready task list. This allows page
faults to be processed asynchronously with respect to the execution on the virtual machine. The virtual
machine can force synchronous page fault processing by disabling page fault notification. It should be
noted that page fault cleared interrupts cannot be directly disabled by a virtual machine. A page fault
cleared interrupt is always given when the /O is complete for a fault that has resulted in a page fault
occurred interrupt. Page fault cleared interrupts can be indirectly disabled by disabling page fault
occurred interrupts.

~ Synchronous Page Fault Processing: For synchronous faults, the Process Control Block (PCB) of the
process that faulted is placed on either the page's I/O wait list or the free page frame list when the I/O is
required. The process is placed on the page I/O wait list when the Virtual Memory Manager initiates I/O
for the page or I/O for the page was already in progress. The process is placed on the free page frame list
when there are no free page frames available to perform the 1/0 into.

Asynchronous Page Fault Processing: When an asynchronous page fault occurs, the faulting virtual
machine is notified of the segment identifier it faulted on, and the virtual address rounded down to the
nearest page boundary. It is important to note that notification is not given for the address that the virtual
machine faulted on, but for that page. or example, if a virtual machine faults on addresses x*806",
x'856°, x'87E", 1t will get three page fault occurred notifications for x'800" and one page fault cleared

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

ll

R0 T

United States Patent: 4,742,447 Page 19 of 25

~ notification for x'800". A Notify Control Block (NCB) is allocated and chained to the page's /O wait
list when 170 is required. This is the same chain that PCBs are chained onto. The PCBs and NCBs are
typed so it is possible to tell them apart. A PCB is chained for a synchronous fault and an NCB is
chained for an asynchronous fault.

If the notification was given because of a page fault on the External Page Table (other than the original
- fault), then the Notification Control Block is chained off the IPT that the XPT is paged into, but the
address of the original fault is in the Notification Control Block.

: The free frame wait list case is a special case. The virtual machine is notified and its Notification
Control Block is chained, first-in, first-out, onto the free frame wait list along with PCBs. The first page
out that causes a frame to be freed-up when this NCB is at the head of the free frame wait list will cause
notification to be given.

Page Fauilt Occurred Notification: A page fault occurred interrupt is generated by the page fault handler
upon determining that an asynchronous fanlt has occurred and I/O is required. No internal VRM queue
clement is required to perform this function. The page fault handler actually swaps the virtual machine's
. (PSB) and execution level. The premise that allows this is that page faults on machine communications
" or program check levels are processed synchronously, without notification, This implies that the
interrupt does not need to be queued because the virtual machine can always take page fault occurred
interrupts.

Page Fault Cleared Notification: When the I/O for a page fault is complete, the Virtual Memory
Manager will be called to clean up. The page fault complete interrupt is queued to the virtual machine

by the VRM queue management function. This implies the need for a queue element. The Notification
Control Block is used for that function.

Asynchronous Page Fault Scenario: A page fault is considered complete when each I/0 is generates
completes. A virtual machine will get 'n" total page fault occurred interrupts, and 'n' page fault
complete interrupts for a page fault that requires “n' 1/Os to satisfy. Example (n=3 here): Assume that
the virtual machine faults asynchronously on a page that exists, but is not in memory, there are no freg.
frames in memory to page it into, and the virtual memory manager faults on the XPT for the original
page. The following lists the order of events (Note that this scenario is not the typical case):

1. VM Page Faults

2. VMM Enqueues Page out requests to build up free page frame list

3. VMM Notifies virtual machine of Original Page Fault

4. VM is Dispatched (presumably it will task switch or wait)

5. Page out I/O completes

6. VMM Notifies virtual machine that the original Page Fault is resolved

7. VM is Dispatched

8. VM Page Faults again on the same address

9. VMM Page Faults on XPT

http://patft.uspto.gov/netacgi/nph—Parser?Sect1=PT02&Sect2=HITOFF&p=I&u=/netaht... 12/20/2005

United States Patent: 4,742,447 Page 20 of 25

' 10. VMM Enqueues Page in request for that XPT
11. VMM Notifies virtual machine of Original Page Fault
~ 12. VM is Dispatched (presumably it will task switch or wait)
13. The XPT Page in I/O completes
14, VMM Notifies virtual machine that the original Page Fault is resolved
15. VM is Dispatched |
16. VM Page Faults again on the same address
17. VMM Enqueues Page in request for the page faulted on
18. VMM Notifies virtual machine of the Page Fault r
19, Dispatched (presumably it will task switch or wait) |
© 20. BDThe Page in I/O completes
21. VMM Notifies virtual machine that the original Page Fault is resolved
22. VM is Dispatched
" Purge Page Range Notification: There is another Way in the system to get a notification of I/O complete
from the Virtual Memory Manager. This is on the asynchronous forced write option of the Purge Page
SVC. One machine communications interrupt is presented to the virtual machine upon completion of the
I/O for the Purge. Like page fault complete interrupts, this is given to the virtual machine, regardless of
whether the virtual machine enables page fault notification.
The way it works is an NCB is chained on the page I/O level wait list, along with PCBs. In the NCB is

marked the page I/0 level that must be achieved before the purge 1/0 can be considered complete. When
that page I/O level is attained, the virtual machine will be notified.

- Page Fault Handler: A large function of the page fault handler, namely the way it handles synchronous

and asynchronous page faults is discussed in "Page Fault Processing." In the following section, where
statements are made such as: "the faulter is notified," this means that if the faulter faulted
asynchronously, it is notified, otherwise it is un-readied, as per previously described rules. This section
. describes the actual process that the page fault handler goes through to resolve a fault.

The page fault handler runs as an extension of the program check handler, at a lower interrupt level;
below all interrupting devices. It runs in a back-track state, thus allowing it to page fault on the Virtual
Memory Manager data structures.

~ When the page fault handler is entered, it immediately saves information about the fault, such as the
virtual address. The reason that it does this is, if it page faulis within itself, and that fault needs to do
/O, the page fault handler must know what address to give to the virtual machine for asynchronous
" notification. This implies that no page faults are allowed in the window between where the page fault

http://patft.uspto.gov/netacgi/mph-Parser?Sect 1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 4,742,447 Page 21 of 25

handler has been backed out because of a page fault and where it is called again to service its own fault.
There are several important steps into which the page fault handler may be broken into:

Page Reclaim

- If the page can be reclaimed, then the page fault handler is done. If page in or page out I/O is in progress
to the page, then the faulter is chained onto the page's /O wait list. Upon completion of the I/O, a test is
made to see if any process is waiting on the frame and if so, it is notified. Reclaim, therefore, is split
across the page fault handler and page fault end. If the page is on the free list, then the faulter is re-
dispatched after the page frame is made accessible. The faulter is not notified or forced to wait.

Building up the Free Page List

~ If'the free list is found to be below a lower threshold, then page outs are intiated to build it up to an
. upper threshold. These thresholds are system tuning parameters. If the free list is still empty after
attempting to replenish it, then the fanlter will be notified of the original fault.

Clock with second chance is the technique used to select pages to be replaced.
Processing the Fault

The page fault handler involves itself with most of the Virtual Memory Manager structures, but most
importantly, it examines the XPT for the page faulted on, and the page fault handler may fault at this
time. It also allocates a paging space disk slot for the page.

‘Page Fault End: This procedure handles all I/O completion interrupts for the Virtual Memory Manager.
It is scheduled for execution by the queue manger when the hard file device driver dequeues a Virtual
Memory Manager request. Note that execution of this routine is delayed until the completion of any
preempted Virtual Memory Manager critical section. Page fault cleared notification is given by this
procedure according to the rules set in "Page Fault Processing." This procedure may not page fault and,
therefore, no references are allowed to XPTs or other pageable data structures. There are two types of
I/O that can complete for the Virtual Memory Manager.

Pagein
Page out

~ All processes waiting on the frame are readied/ notified. Also, the page I/O level is updated. This is a
count of all the I/O operations that have completed. All processes waiting on a page I/O level less than
or equal to the updated page I/O level are readiednotified when the oldest /O operation completes. The
frame is made accessible by validating the IPT tag word for all page in completions and reclaimed page
out completions of an unreleased page. Otherwise, the frame is placed on the free list.

This procedure attempts to replenish the system control block area when the number of free system
control blocks is below its upper threshold and a free frame exists. All processes waiting on a free
system control block are then readied. This procedure is also responsible for waking up processes
waiting for a free frame. A free frame is assigned to the process that has been waiting the Iongest fora
free frame. This processes is then notified/readied.

- Paging Space: The Virtual Memory Manager supports paging to one or more paging spaces. Currently,

http://patﬁ.uspto.gov/netacgi/nph-Parser?Sectl=PTO2&Sect2=HITOFF&p=l&u=/netaht... 12/20/2005

United States Patent: 4,742,447 Page 22 of 25

the only paging device supported is a hardfile, however, the design has been made relatively flexible in .
this area for future expansion. A requirement of all paging spaces is that they be formatted for 512 byte :
blocks.

Paging Space Initialization: All paging spaces MUST be known to the Virtual Memory Manager at

system initialization. If a user creates a paging space using the Mini-disk Manager, then, before the

Virtual Memory Manager will page to it, the system must be re-IPLed, or reinitialized. The reason for

this is that system injtialization is the only time that the Virtual Memory Manager paging space data

structures are built. All paging spaces, as well as the disk allocation bit map are set up at Mini-disk
Manager initialization time. The Mini-disk Manager queries all mini-disks, and when it find a paging Z
space mini-disk, it calls a routine which effectively "defines" a paging space to the VMM. Before calling

the define paging space routine, the Mini-disk Manager opens the paging mini-disk (it will be left open).

The way that the define paging space routine works is as follows:

1. Allocate a PDX for the paging space.

2. Initialize the PDX.

3. Initialize the paging mini-disk table.

4. Insert the new PDX onto a linked list of all existing PDXs.

5. Each PDX is made to point to its paging mini-disk table entry and vice versa.
6. Set up the disk allocation bit map (temporary disk map for this paging space.
There is one disk allocation bit map, and it is

partitioned among all paging spaces. The reason for having one bit map, rather than multiple, is that by
packing paging spaces into one bit map, it will improve the locality of reference to the bit map. The
XPTs for the bit map are set such that the bit map is initially all logically zero. If a paging space is not a
multiple of 64K, then system initialization rounds the size up to the next 64K boundary, and marks the
blocks (bits) in between as allocated. This requires the ability of system initialization to take a first
teference page fault at this time.

After defining a paging space, the Mini-disk Manager then checks for bad blocks on the paging space. If
a bad paging space block is found, the Mini-disk Manager will call a routine to mark the bad paging
spaces as allocated in the Virtually Memory Manager temporary disk map. This way, the Virtual

" Memory Manager will never use them. The Mini-disk Manager will then do bad block relocation on that
paging space in the future.

Paging Space Management: Paging disk blocks are allocated one at a time, in a circular fashion per i
. paging space. A pointer is kept to the last place allocated at in each paging space. On the next allocation
in that particular paging space, the search for an empty slot starts at the Iast allocated slot and
incrementally runs through the paging space (wrapping around at end). The idea behind allocating in this
fashion is to improve page out affinity, and page ahead. The circular pointer through a paging space can
be thought of as pointing to the "oldest" spot on that paging space, or, in other words, the spot that was
written out the longest ago. It is a reasonably good probability that that disk slot will be free now (since
it was allocated a long time ago). All disk slots are allocated at page out time, so if a large purge page
range is performed, causing a lot of slots to be allocated at once, this will allocate them close together.
This is assuming that the purge is being done to page out a working set of a particular process, or entity

htip://patft.uspto.gov/netacgi/nph-Parser?Sect] =PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

. United States Patent: 4,742,447 Page 23 of 25

in the virtual machine. When that process becomes active again, its working set is close together on
disk, minimizing arm movement, and maximizing page ahead efficiency.

In the presence of more than one paging space, they each, individually, behave as previously described.
The Virtual Memory Manager disk allocation will decide which paging mini-disk to allocate a block to.
The disk scheduler will keep track of where the disk arm is (approximately). The Virtual Memory
-Manager utilizes this by attempting to allocate on the paging space whose point of last allocation is
. closest to where the disk arm is (for all disks).

Virtual Memory Manager SVCs: The Virtual Memory Manager SVCs all execute as extensions of the
virtual machine. These SVCs can result in explicit I/O such as a page out of a purged page or implicit
1O such as page faults on code, stack, or data. All I/O for synchronous SVCs will place the virtual
machine in a synchronous page fault wait state until the I/O is complete. Only implicit 1/O for
asynchronous SVCs will place the virtual machine in a synchronous page fault wait state until the /O is

. complete. Explicit I/O will be initiated and the virtual machine notified upon completion.

~ Special Program Check Error Processing: Program check errors that occur while executing code within a
. virtual machine are reported to the virtual machine via a program check virtual interrupt. Program check
errors that occur while executing within the VRM result in an abnormal system termination. VRM SVCs
execute within the VRM and perform functions on behalf of a virtual machine. Therefore, the program
check handler looks at a value in low memory to determine if errors that occur within VRM SVC code
are to be reported to the virtual machine as a program check virtual interrupt with the old IAR specifying
the SVC or if the errors are an abnormal system termination.

Selected VMM SVCs use this facility to save path length by not checking for error conditions when
accessing parameter lists. The program check handler performs the error recovery for them.

Virtual Memory Manager Services: All Virtual Memory Manager services execute synchronously with
respect to the caller. Several of these services can result in page faults in which case the process of the
caller is forced to wait for the page fault to be resolved.

Asynchronous vs. Synchronous Page Faults: The VRM supports both synchronous and asynchronous
page fault processing for virtual machines. With synchronous page fault processing, the entire virtual
machine is forced to wait until the page fault is resolved. With asynchronous page fault processing, the
virtual machine is allowed to dispatch other tasks. Only the faulting task is forced to wait until the page
- fault is resolved. Because of this, any operation that results in synchronous page fault processing will
tend to lower the number of concurrent tasks that can be executed while any operation that results in
asynchronous page fault processing will tend to maximize the number of concurrent tasks that can be

_ executed.

FIG. 6 illustrates two additional data structures that are uniquely associated with the map page range

. services which incorporates the method of the present invention. The first data structure is map node 70,
which is dynamically created when a file is to be mapped and the mapped file page structure 71, which
resembles the general format of an External Page Table (XPT), discussed earlier.

The map node 70 as shown in FIG. 6, includes four fields designated 72-75. Field 72 is designated the
segment ID and functions to store the segment identifier that is to be used to store the mapped file. The
field designation 73 is the map count field which functions to keep track of the number of users who
have concurrently requested that the file be mapped, other than copy.sub.-- on.sub.-- write type of
mapping. Field 74 of map node 70 is designated the CW segment ID or the copy.sub.-- on.sub.-- write
segment ID which identifies the unique segment ID that is used exclusively for the copy.sub.-- on.sub.--

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

AT

L T ST T IPOLIN

United States Patent: 4,742,447 Page 24 of 25

write segment. Field 75 is the copy.sub.-- on.sub.-- write map count field which functions to keep track
of the number of users who are sharing this copy.sub.-- on.sub.-- write segment.

The data structure 80 is a specific section of the segment table used to store the segment ID segments
that are being shared by more than one user.

The mapped file page structure 71 is similar to an XPT, in that it includes an entry for each page of the
file that is mapped. Entries, as shown in FIG. 6, include a protection field 81, a page status field 82, and
a disk address field 83. The mapped file page structure is allocated from the XPT pool 86, shown
diagramatically in FIG. 6.

The dotted line block label 90 represents virtual memory. Segments of the memory addressable by the
segment registers are designated 91, while the page of a segment is designated by reference character 92.

Block 95 represents a process running in the system. Block 96 represents a list of segment identifiers for
segments associated with the running process. These IDs are loaded into appropriate segment registers
when the process "n" has its turn on the system. The 32 bit effective address is converted to a 40 bit

_ virtual address consisting of a 12 bit segment identifier and a 28 bit offset, as explained earlier in the
application. The 12 bit segment ID is provided by one of the 16 bit segment registers that was selected
by the 4 high order bits of the 32 bit effective address.

The VRM includes a fault handler which indicates two separate functions represented by blocks 97 and

98, respectively, in FIG. 6. Block 97 functions to address system memory and provide the block 98 with
a page fault interrupt when the requested page is not in main memory. Block 98 functions to resolve the
page fault through access to the mapped file page structure since it contains the disk address in field 83,

as described earlier.

FIG. 7a is a flow chart, illustrating the major steps involved in the system when an application process

"n" performs various UNIX type System Calls. In block 100 the first system call is to open a file. Block

101 performs the open file operation. The file may be opened as a read/write file, read only file, or a

write only file. Block 102 functions to read the inode into main memory from a directory reference 103
 that is kept by the UNIX file management system.

Assuming that the file has been opened, the next system call is a SHMAT (2) read only call to block
104. Block 105 determines if the file is currently mapped by reference to the segment table. If the
segment is not currently mapped, a test is made in block 106 to see if the segment has been created. If
the segment has not been created, block 107 creates the segment. Block 108 functions to increment the
referenced count in the segment count field. Block 109 functions to get the segment ID, while block 110
- loads the segment register. If the segment is currently mapped, as determined by block 111, the
addressing operation for the read system call is complete. If the file is not currently mapped, a map page
range service call is initiated to map the range of pages that are active in the system, as indicated by the
file's External Page Table. Block 112 functions to create the map node 70 and the mapped file page
structure 71, shown in FIG. 6.

The actual read operation, represented by block 120 checks to see if the file is mapped, as shown in
block 121. If the file is not mapped, block 122 does a standard read operation. A similar operation is
done for a write operation by block 123.

For either a read or write operation when the file is mapped, block 124 converts the file offset and length
parameters of the UNIX System Call parameters to a segment and offset parameter. Block 125 gets the

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

B S R R BT L T T TR T U T SO

United States Patent: 4,742,447 Page 25 of 25

segment register ID from the shared segment table for the I/O operation if the system call is for a
copy.sub.-- on.sub.-- write operation or a read/write operation. Block 126 tests to see if a write operation
is involved and, if so, to allocate a new block on the disk file in block 127. If a write operation is not

" involved, block 127 is bypassed and block 128 does a copy between the disk and main memory. A block
129 then re-dispatches the process.

FIG. 7b illustrates Process A performing a SHMAT read/write system call, as indicate d by block 130.
Block 131 tests to see if the file is currently mapped for a read/write operation. If not, block 132 tests to
see if the segment exists. If the segment does not exist, block 133 creates a memory segment for the
mapped file, while block 134 and 135 get and load the segment register with the segment ID for the
mapped file. Block 136 tests to see if the file is mapped and, if so, the function is complete. If the file is
. not currently mapped read/write, the map page range service block 137 performs a page mapping to
create the data structures 70 and 71 of FIG. 6.

The major steps performed by the map page range service block 112 or 137 are illustrated in FIG. 7c.
After a segment has been created the file must be mapped into the segment. This is a dynamic operation,
since the primary storage allocation is virtual, and the segment assignment is transient. As illustrated in
FIG. 7c the inode structure 181 is read for the block address of each page to be allocated for the file.
Each group of contiguously allocated blocks is summed, and the count recorded in the field adjacent to
the starting block number 2 entry in the map page range structure. Distontiguous blocks are reflected in
discrete entries in the map page range structure. When the entire file inode structure has been scanned,
the map page range SVC is issued and the external page table slot entries for the appropriate segment are
updated with the block addresses for each page of the file.

While the invention has been shown and described with reference to a particular embodiment, it should
be appreciated by those persons skilled in the art that changes and modifications may be made without
departing from the spirit of the invention or the scope of the appended claims.

® kR %K

Images

1?iew Cart] Add to Ca!i]

-

[Hit List] Previocus [Top

[Home J[Quick]:d"danced‘[l’at Num L&mj

http://patft.uspto.gov/netacgi/nph—Parser?Sect1=PT02&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

